Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. M. Scott is active.

Publication


Featured researches published by S. M. Scott.


Journal of Geometry and Physics | 1994

The abstract boundary—a new approach to singularities of manifolds

S. M. Scott; Peter Szekeres

A new scheme is proposed for dealing with the problem of singularities in General Relativity. The proposal is, however, much more general than this. It can be used to deal with manifolds of any dimension which are endowed with nothing more than an affine connection, and requires a family C of curves satisfying a bounded parameter property to be specified at the outset. All affinely parametrised geodesics are usually included in this family, but different choices of family C will in general lead to different singularity structures. Our key notion is the abstract boundary or a-boundary of a manifold, which is defined for any manifold M and is independent of both the affine connection and the chosen family C of curves. The a-boundary is made up of equivalence classes of boundary points of M in all possible open embeddings. It is shown that for a pseudo-Riemannian manifold (M,g) with a specified family C of curves, the abstract boundary points can then be split up into four main categories—regular, points at infinity, unapproachable points and singularities. Precise definitions are also provided for the notions of a removable singularity and a directional singularity. The pseudo-Riemannian manifold will be said to be singularity-free if its abstract boundary contains no singularities. The scheme passes a number of tests required of any theory of singularities. For instance, it is shown that all compact manifolds are singularity-free, irrespective of the metric and chosen family C. All geodesically complete pseudo-Riemannian manifolds are also singularity-free if the family C simply consists of all affinely parametrised geodesics. Furthermore, if any closed region is excised from a singularity-free manifold then the resulting manifold is still singularity-free. Numerous examples are given throughout the text. Problematic cases posed by Geroch and Misner are discussed in the context of the a-boundary and are shown to be readily accommodated.


Classical and Quantum Gravity | 2008

Searching for gravitational waves from Cassiopeia A with LIGO

K. Wette; B. J. Owen; B. Allen; M. Ashley; J. Betzwieser; N. Christensen; T. D. Creighton; V. Dergachev; I. Gholami; E. Goetz; R. Gustafson; D. Hammer; D. I. Jones; Badri Krishnan; M. Landry; B. Machenschalk; D. E. McClelland; G. Mendell; C. Messenger; M. A. Papa; P. Patel; M. Pitkin; H. J. Pletsch; R. Prix; K. Riles; L. Sancho De La Jordana; S. M. Scott; A. M. Sintes; M. Trias; James Whelan

We describe a search underway for periodic gravitational waves from the central compact object in the supernova remnant Cassiopeia A. The object is the youngest likely neutron star in the Galaxy. Its position is well known, but the object does not pulse in any electromagnetic radiation band and thus presents a challenge in searching the parameter space of frequency and frequency derivatives. We estimate that a fully coherent search can, with a reasonable amount of time on a computing cluster, achieve a sensitivity at which it is theoretically possible (though not likely) to observe a signal even with the initial LIGO noise spectrum. Cassiopeia A is only the second object after the Crab pulsar for which this is true. The search method described here can also obtain interesting results for similar objects with current LIGO sensitivity.


Classical and Quantum Gravity | 2010

AIGO: a southern hemisphere detector for the worldwide array of ground-based interferometric gravitational wave detectors

P. Barriga; David Blair; David Coward; Jacqueline A. Davidson; J. C. Dumas; E. J. Howell; L. Ju; L. Wen; C. Zhao; D. E. McClelland; S. M. Scott; B. J. J. Slagmolen; R. Inta; J. Munch; D. J. Ottaway; P. J. Veitch; D. J. Hosken; A. Melatos; C. T. Y. Chung; L. Sammut; Duncan K. Galloway; J. N. Marx; S. E. Whitcomb; DeWayne Shoemaker; Scott A. Hughes; D. H. Reitze; Bala R. Iyer; S. Dhurandhar; T. Souradeep; C. S. Unnikrishnan

This paper describes the proposed AIGO detector for the worldwide array of interferometric gravitational wave detectors. The first part of the paper summarizes the benefits that AIGO provides to the worldwide array of detectors. The second part gives a technical description of the detector, which will follow closely the Advanced LIGO design. Possible technical variations in the design are discussed.


Classical and Quantum Gravity | 2004

ACIGA's high optical power test facility

L. Ju; M Aoun; P. Barriga; D G Blair; A. F. Brooks; Ron Burman; Raymond Burston; X T Chin; E. Chin; C Y Lee; David Coward; B. J. Cusack; G. de Vine; J. Degallaix; J. C. Dumas; Florin Garoi; S. Gras; Malcolm B. Gray; D. J. Hosken; Ellen Susanna Howell; John S. Jacob; Thu-Lan Kelly; Bum-Hoon Lee; K T Lee; T Lun; D. E. McClelland; C. M. Mow-Lowry; D. Mudge; J Munch; S. Schediwy

Advanced laser interferometer detectors utilizing more than 100 W of laser power and with ~106 W circulating laser power present many technological problems. The Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) is developing a high power research facility in Gingin, north of Perth, Western Australia, which will test techniques for the next generation interferometers. In particular it will test thermal lensing compensation and control strategies for optical cavities in which optical spring effects and parametric instabilities may present major difficulties.


arXiv: General Relativity and Quantum Cosmology | 2010

LIGO-Virgo searches for gravitational waves from coalescing binaries: A status update

A. S. Sengupta; B. Abbott; B. Allen; R. Amin; F. Matichard; M. A. Arain; D. Kasprzyk; P. Aufmuth; S. Babak; P. Baker; P. Barriga; I. A. Bilenko; Giuseppe Castaldi; P. Charlton; C. T. Y. Chung; C. N. Colacino; R. Conte; S. Dhurandhar; D. J. Hosken; Tadahiro Sato; A. Sergeev; Malcolm B. Gray; Ping Koy Lam; David McClelland; Karen Mackenzie; C. M. Mow-Lowry; A. Mullavey; D. S. Rabeling; M. Satterthwaite; S. M. Scott

Coalescing compact binaries of neutron stars and/or black holes are considered as one of the most promising sources for Earth based gravitational wave detectors. The LIGO-Virgo joint collaborations Compact Binary Coalescence (CBC) group is searching for gravitational waves emitted by these astrophysical systems by matched filtering the data against theoretically modeled template waveforms. A variety of waveform template families are employed depending on the mass range probed by the search and the stage of the inspiral phase targeted: restricted post-Newtonian for systems having total mass less than 35M?, numerical relativity inspired complete inspiral-merger-ringdown waveforms for more massive systems up to 100M? and ringdown templates for modeling perturbed black holes up to 500M?. We give a status update on CBC groups current efforts and upcoming plans in detecting signatures of astrophysical gravitational waves.


Journal of Physics: Conference Series | 2006

Gingin High Optical Power Test Facility

C. Zhao; David Blair; Pablo Barrigo; J. Degallaix; J. C. Dumas; Y. Fan; S. Gras; L. Ju; Bum-Hoon Lee; S. Schediwy; Z. Yan; D. E. McClelland; S. M. Scott; Malcolm B. Gray; A. C. Searle; S. Gossler; B. J. J. Slagmolen; J. Dickson; K. McKenzie; C. M. Mow-Lowry; A. Moylan; D. S. Rabeling; Jeffrey Cumpston; K. Wette; J. Munch; P. J. Veitch; D. Mudge; A. F. Brooks; D. J. Hosken

The Australian Consortium for Gravitational Wave Astronomy (ACIGA) in collaboration with LIGO is developing a high optical power research facility at the AIGO site, Gingin, Western Australia. Research at the facility will provide solutions to the problems that advanced gravitational wave detectors will encounter with extremely high optical power. The problems include thermal lensing and parametric instabilities. This article will present the status of the facility and the plan for the future experiments.


Classical and Quantum Gravity | 2006

Status of the Australian Consortium for Interferometric Gravitational Astronomy

D. E. McClelland; S. M. Scott; Malcolm B. Gray; A. C. Searle; S. Goßler; Bram Slagmolen; J. Dickson; Jong H. Chow; G. de Vine; K. McKenzie; C. M. Mow-Lowry; A. Moylan; D. S. Rabeling; Benjamin Sheard; Jeffrey Cumpston; K. Wette; D G Blair; L. Ju; Ron Burman; David Coward; C. Zhao; P Barrigo; E. Chin; J. Degallaix; Y. Fan; S. Gras; Ellen Susanna Howell; Bum-Hoon Lee; S. Schediwy; Z. Yan

We report the status of research and development being undertaken by the members of the Australian Consortium for Interferometric Gravitational Astronomy.


Journal of Physics: Conference Series | 2008

The Science benefits and Preliminary Design of the Southern hemisphere Gravitational Wave Detector AIGO.

David Blair; P. Barriga; A. F. Brooks; P. Charlton; David Coward; J-C. Dumas; Y. Fan; David Galloway; S. Gras; D. J. Hosken; Ellen Susanna Howell; Scott A. Hughes; L. Ju; D. E. McClelland; A. Melatos; Haixing Miao; Jesper Munch; S. M. Scott; Bram Slagmolen; P. J. Veitch; L. Wen; J. K. Webb; A Wolley; Z. Yan; Chunjin Zhao

The proposed southern hemisphere gravitational wave detector AIGO increases the projected average baseline of the global array of ground based gravitational wave detectors by a factor ~4. This allows the world array to be substantially improved. The orientation of AIGO allows much better resolution of both wave polarisations. This enables better distance estimates for inspiral events, allowing unambiguous optical identification of host galaxies for about 25% of neutron star binary inspiral events. This can allow Hubble Law estimation without optical identification of an outburst, and can also allow deep exposure imaging with electromagnetic telescopes to search for weak afterglows. This allows independent estimates of cosmological acceleration and dark energy as well as improved understanding of the physics of neutron star and black hole coalescences. This paper reviews and summarises the science benefits of AIGO and presents a preliminary conceptual design.


Classical and Quantum Gravity | 2002

Network sensitivity to geographical configuration

A. C. Searle; S. M. Scott; D. E. McClelland

Gravitational wave astronomy will require the coordinated analysis of data from the global network of gravitational wave observatories. Questions of how to optimally configure the global network arise in this context. We have elsewhere proposed a formalism which is employed here to compare different configurations of the network, using both the coincident network analysis method and the coherent network analysis method. We have constructed a network model to compute a figure-of-merit based on the detection rate for a population of standard-candle binary inspirals. We find that this measure of network quality is very sensitive to the geographic location of component detectors under a coincident network analysis, but comparatively insensitive under a coherent network analysis.


arXiv: General Relativity and Quantum Cosmology | 2012

Search for gravitational waves associated with the InterPlanetary Network short gamma ray bursts

Jong H. Chow; S. Chua; R. Inta; Ping Koy Lam; David McClelland; J. D. B. Miller; C. M. Mow-Lowry; A. Mullavey; T. Nguyen; S. M. Scott; Daniel A. Shaddock; Bram Slagmolen; M. Stefszky; A. Wade; J. Abadie; B. Abbott; R. Abbott; R. Adhikari; R. Bork; D. C. Coyne; J. Heefner; A. Heptonstall; K. Mailand; J. N. Marx

We outline the scientific motivation behind a search for gravitational waves associated with short gamma ray bursts detected by the InterPlanetary Network (IPN) during LIGOs fifth science run and Virgos first science run. The InterPlanetary Network localisation of short gamma ray bursts is limited to extended error boxes of different shapes and sizes and a search on these error boxes poses a series of challenges for data analysis. We will discuss these challenges and outline the methods to optimise the search over these error boxes.

Collaboration


Dive into the S. M. Scott's collaboration.

Top Co-Authors

Avatar

D. E. McClelland

Australian National University

View shared research outputs
Top Co-Authors

Avatar

A. C. Searle

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Bram Slagmolen

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Malcolm B. Gray

National Measurement Institute

View shared research outputs
Top Co-Authors

Avatar

L. Ju

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

B. Abbott

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar

Jong H. Chow

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Ping Koy Lam

Australian National University

View shared research outputs
Top Co-Authors

Avatar

A. Mullavey

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

David Blair

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge