Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Merouane is active.

Publication


Featured researches published by S. Merouane.


Nature | 2010

Earth encounters as the origin of fresh surfaces on near-Earth asteroids

Richard P. Binzel; Alessandro Morbidelli; S. Merouane; Francesca E. DeMeo; Mirel Birlan; Pierre Vernazza; Cristina A. Thomas; Andrew Scott Rivkin; Schelte John Bus; Alan T. Tokunaga

Telescopic measurements of asteroids’ colours rarely match laboratory reflectance spectra of meteorites owing to a ‘space weathering’ process that rapidly reddens asteroid surfaces in less than 106 years. ‘Unweathered’ asteroids (those having spectra matching the most commonly falling ordinary chondrite meteorites), however, are seen among small bodies the orbits of which cross inside Mars and the Earth. Various explanations have been proposed for the origin of these fresh surface colours, ranging from collisions to planetary encounters. Less reddened asteroids seem to cross most deeply into the terrestrial planet region, strengthening the evidence for the planetary-encounter theory, but encounter details within 106 years remain to be shown. Here we report that asteroids displaying unweathered spectra (so-called ‘Q-types’) have experienced orbital intersections closer than the Earth–Moon distance within the past 5 × 105 years. These Q-type asteroids are not currently found among asteroids showing no evidence of recent close planetary encounters. Our results substantiate previous work: tidal stress, strong enough to disturb and expose unweathered surface grains, is the most likely dominant short-term asteroid resurfacing process. Although the seismology details are yet to be worked out, the identification of rapid physical processes that can produce both fresh and weathered asteroid surfaces resolves the decades-long puzzle of the difference in colour of asteroids and meteorites.


The Astrophysical Journal | 2015

DENSITY AND CHARGE of PRISTINE FLUFFY PARTICLES FROM COMET 67P/CHURYUMOV-GERASIMENKO

M. Fulle; V. Della Corte; Alessandra Rotundi; Paul R. Weissman; A. Juhasz; K. Szego; R. Sordini; M. Ferrari; S. Ivanovski; F. Lucarelli; M. Accolla; S. Merouane; V. Zakharov; E. Mazzotta Epifani; J. J. Lopez-Moreno; J. Rodriguez; L. Colangeli; P. Palumbo; E. Grün; M. Hilchenbach; E. Bussoletti; F. Esposito; Simon F. Green; P. L. Lamy; J. A. M. McDonnell; V. Mennella; A. Molina; Rafael Talero Morales; F. Moreno; J. L. Ortiz

The Grain Impact Analyzer and Dust Accumulator (GIADA) instrument on board ESA’s Rosetta mission is constraining the origin of the dust particles detected within the coma of comet 67 P/Churyumov–Gerasimenko (67P). The collected particles belong to two families: (i) compact particles (ranging in size from 0.03 to 1 mm), witnessing the presence of materials that underwent processing within the solar nebula and (ii) fluffy aggregates (ranging in size from 0.2 to 2.5 mm) of sub-micron grains that may be a record of a primitive component, probably linked to interstellar dust. The dynamics of the fluffy aggregates constrain their equivalent bulk density to <1 kg m-3. These aggregates are charged, fragmented, and decelerated by the spacecraft negative potential and enter GIADA in showers of fragments at speeds <1 m s-1. The density of such optically thick aggregates is consistent with the low bulk density of the nucleus. The mass contribution of the fluffy aggregates to the refractory component of the nucleus is negligible and their coma brightness contribution is less than 15%.


The Astrophysical Journal | 2016

Comet 67P/Churyumov–Gerasimenko: Close-up on Dust Particle Fragments

Martin Hilchenbach; J. Kissel; Yves Langevin; Christelle Briois; H. von Hoerner; Andreas Koch; R. Schulz; Johan Silen; Kathrin Altwegg; L. Colangeli; H. Cottin; C. Engrand; Henning Fischer; Albrecht Glasmachers; E. Grün; Gerhard Haerendel; H. Henkel; H. Höfner; Klaus Hornung; Elmar K. Jessberger; Harry J. Lehto; Kirsi Lehto; F. Raulin; L. Le Roy; Jouni Rynö; W. Steiger; Thomas G. Stephan; Laurent Thirkell; R. Thomas; K. Torkar

The COmetary Secondary Ion Mass Analyser instrument on board ESAs Rosetta mission has collected dust particles in the coma of comet 67P/Churyumov-Gerasimenko. During the early-orbit phase of the Rosetta mission, particles and particle agglomerates have been imaged and analyzed in the inner coma at distances between 100 km and 10 km off the cometary nucleus and at more than 3 AU from the Sun. We identified 585 particles of more than 14 μm in size. The particles are collected at low impact speeds and constitute a sample of the dust particles in the inner coma impacting and fragmenting on the targets. The sizes of the particles range from 14 μm up to sub-millimeter sizes and the differential dust flux size distribution is fitted with a power law exponent of -3.1. After impact, the larger particles tend to stick together, spread out or consist of single or a group of clumps, and the flocculent morphology of the fragmented particles is revealed. The elemental composition of the dust particles is heterogeneous and the particles could contain typical silicates like olivine and pyroxenes, as well as iron sulfides. The sodium to iron elemental ratio is enriched with regard to abundances in CI carbonaceous chondrites by a factor from ˜1.5 to ˜15. No clear evidence for organic matter has been identified. The composition and morphology of the collected dust particles appear to be similar to that of interplanetary dust particles.


Nature | 2016

High-molecular-weight organic matter in the particles of comet 67P/Churyumov–Gerasimenko

Nicolas Fray; Anais Bardyn; H. Cottin; Kathrin Altwegg; Donia Baklouti; Christelle Briois; L. Colangeli; C. Engrand; Henning Fischer; Albrecht Glasmachers; E. Grün; Gerhard Haerendel; Hartmut Henkel; H. Höfner; Klaus Hornung; Elmar K. Jessberger; Andreas Koch; Harald Krüger; Yves Langevin; Harry J. Lehto; Kirsi Lehto; Léna Le Roy; S. Merouane; Paola Modica; F.-R. Orthous-Daunay; John Paquette; F. Raulin; Jouni Rynö; R. Schulz; Johan Silen

The presence of solid carbonaceous matter in cometary dust was established by the detection of elements such as carbon, hydrogen, oxygen and nitrogen in particles from comet 1P/Halley. Such matter is generally thought to have originated in the interstellar medium, but it might have formed in the solar nebula—the cloud of gas and dust that was left over after the Sun formed. This solid carbonaceous material cannot be observed from Earth, so it has eluded unambiguous characterization. Many gaseous organic molecules, however, have been observed; they come mostly from the sublimation of ices at the surface or in the subsurface of cometary nuclei. These ices could have been formed from material inherited from the interstellar medium that suffered little processing in the solar nebula. Here we report the in situ detection of solid organic matter in the dust particles emitted by comet 67P/Churyumov–Gerasimenko; the carbon in this organic material is bound in very large macromolecular compounds, analogous to the insoluble organic matter found in the carbonaceous chondrite meteorites. The organic matter in meteorites might have formed in the interstellar medium and/or the solar nebula, but was almost certainly modified in the meteorites’ parent bodies. We conclude that the observed cometary carbonaceous solid matter could have the same origin as the meteoritic insoluble organic matter, but suffered less modification before and/or after being incorporated into the comet.


Astronomy and Astrophysics | 2016

Dust particle flux and size distribution in the coma of 67P/Churyumov-Gerasimenko measured in situ by the COSIMA instrument on board Rosetta

S. Merouane; B. Zaprudin; Oliver Stenzel; Y. Langevin; Nicolas Altobelli; Vincenzo Della Corte; Henning Fischer; M. Fulle; Klaus Hornung; Johan Silen; Nicolas Ligier; Alessandra Rotundi; Jouni Rynö; R. Schulz; Martin Hilchenbach; J. Kissel

Context. The COmetary Secondary Ion Mass Analyzer (COSIMA) on board Rosetta is dedicated to the collection and compositional analysis of the dust particles in the coma of 67P/Churyumov-Gerasimenko (67P). Aims. Investigation of the physical properties of the dust particles collected along the comet trajectory around the Sun starting at a heliocentric distance of 3.5 AU. Methods. The flux, size distribution, and morphology of the dust particles collected in the vicinity of the nucleus of comet 67P were measured with a daily to weekly time resolution. Results. The particles collected by COSIMA can be classified according to their morphology into two main types: compact particles and porous aggregates. In low-resolution images, the porous material appears similar to the chondritic-porous interplanetary dust particles collected in Earth’s stratosphere in terms of texture. We show that this porous material represents 75% in volume and 50% in number of the large dust particles collected by COSIMA. Compact particles have typical sizes from a few tens of microns to a few hundreds of microns, while porous aggregates can be as large as a millimeter. The particles are not collected as a continuous flow but appear in bursts. This could be due to limited time resolution and/or fragmentation either in the collection funnel or few meters away from the spacecraft. The average collection rate of dust particles as a function of nucleo-centric distance shows that, at high phase angle, the dust flux follows a 1/ d 2 comet law, excluding fragmentation of the dust particles along their journey to the spacecraft. At low phase angle, the dust flux is much more dispersed compared to the 1/ d 2 comet law but cannot be explained by fragmentation of the particles along their trajectory since their velocity, indirectly deduced from the COSIMA data, does not support such a phenomenon. The cumulative size distribution of particles larger than 150 μ m follows a power law close to r − 0.8 ± 0.1 , confirming measurements made by another Rosetta dust instrument Grain Impact Analyser and Dust Accumulator (GIADA). The cumulative size distribution of particles between 30 μ m and 150 μ m has a power index of −1.9 ± 0.3. The excess of dust in the 10–100 μ m  range in comparison to the 100 μ m–1 mm range together with no evidence for fragmentation in the inner coma, implies that these particles could have been released or fragmented at the nucleus right after lift-off of larger particles. Below 30 μ m, particles exhibit a flat size distribution. We interprete this knee in the size distribution at small sizes as the consequence of strong binding forces between the sub-constitutents. For aggregates smaller than 30 μ m, forces stronger than Van-der-Waals forces would be needed to break them apart.


Planetary and Space Science | 2015

COSIMA-Rosetta calibration for in-situ characterization of 67P/Churyumov-Gerasimenko cometary inorganic compounds

Harald Krüger; Thomas G. Stephan; C. Engrand; Christelle Briois; Sandra Siljeström; S. Merouane; Donia Baklouti; Henning Fischer; Nicolas Fray; Klaus Hornung; Harry J. Lehto; F.-R. Orthous-Daunay; Jouni Rynö; R. Schulz; Johan Silen; Laurent Thirkell; Mario Trieloff; Martin Hilchenbach

COSIMA (COmetary Secondary Ion Mass Analyser) is a time-of-flight secondary ion mass spectrometer (TOF-SIMS) on board the Rosetta space mission. COSIMA has been designed to measure the composition of cometary dust grains. It has a mass resolution m/{\Delta}m of 1400 at mass 100 u, thus enabling the discrimination of inorganic mass peaks from organic ones in the mass spectra. We have evaluated the identification capabilities of the reference model of COSIMA for inorganic compounds using a suite of terrestrial minerals that are relevant for cometary science. Ground calibration demonstrated that the performances of the flight model were similar to that of the reference model. The list of minerals used in this study was chosen based on the mineralogy of meteorites, interplanetary dust particles and Stardust samples. It contains anhydrous and hydrous ferromagnesian silicates, refractory silicates and oxides (present in meteoritic Ca-Al-rich inclusions), carbonates, and Fe-Ni sulfides. From the analyses of these minerals, we have calculated relative sensitivity factors for a suite of major and minor elements in order to provide a basis for element quantification for the possible identification of major mineral classes present in the cometary grains.


Philosophical Transactions of the Royal Society A | 2017

Mechanical and electrostatic experiments with dust particles collected in the inner coma of comet 67P by COSIMA onboard Rosetta

Martin Hilchenbach; Henning Fischer; Yves Langevin; S. Merouane; John Paquette; Jouni Rynö; Oliver Stenzel; Christelle Briois; J. Kissel; Andreas Koch; R. Schulz; Johan Silen; Nicolas Altobelli; Donia Baklouti; Anais Bardyn; H. Cottin; C. Engrand; Nicolas Fray; Gerhard Haerendel; Hartmut Henkel; H. Höfner; Klaus Hornung; Harry J. Lehto; Eva Maria Mellado; Paola Modica; Léna Le Roy; Sandra Siljeström; W. Steiger; Laurent Thirkell; Roger Thomas

The in situ cometary dust particle instrument COSIMA (COmetary Secondary Ion Mass Analyser) onboard ESAs Rosetta mission has collected about 31 000 dust particles in the inner coma of comet 67P/Churyumov–Gerasimenko since August 2014. The particles are identified by optical microscope imaging and analysed by time-of-flight secondary ion mass spectrometry. After dust particle collection by low speed impact on metal targets, the collected particle morphology points towards four families of cometary dust particles. COSIMA is an in situ laboratory that operates remotely controlled next to the comet nucleus. The particles can be further manipulated within the instrument by mechanical and electrostatic means after their collection by impact. The particles are stored above 0°C in the instrument and the experiments are carried out on the refractory, ice-free matter of the captured cometary dust particles. An interesting particle morphology class, the compact particles, is not fragmented on impact. One of these particles was mechanically pressed and thereby crushed into large fragments. The particles are good electrical insulators and transform into rubble pile agglomerates by the application of an energetic indium ion beam during the secondary ion mass spectrometry analysis. This article is part of the themed issue ‘Cometary science after Rosetta’.


Monthly Notices of the Royal Astronomical Society | 2017

Evidence of sub-surface energy storage in comet 67P from the outburst of 2016 July 03

Jessica Agarwal; V. Della Corte; Paul D. Feldman; B. Geiger; S. Merouane; I. Bertini; D. Bodewits; S. Fornasier; E. Grün; P. H. Hasselmann; Martin Hilchenbach; S. Höfner; S. Ivanovski; Ludmilla Kolokolova; M. Pajola; Alessandra Rotundi; H. Sierks; Andrew Joseph Steffl; Nicolas Thomas; Michael F. A'Hearn; Cesare Barbieri; M. A. Barucci; J.-L. Bertaux; S. Boudreault; G. Cremonese; V. Da Deppo; B. Davidsson; Stefano Debei; M. De Cecco; J. Deller

On 3 July 2016, several instruments on board ESA’s Rosetta spacecraft detected signs of an outburst event on comet 67P, at a heliocentric distance of 3.32 AU from the sun, outbound from perihelion. We here report on the inferred properties of the ejected dust and the surface change at the site of the outburst. The activity coincided with the local sunrise and continued over a time interval of 14 – 68 minutes. It left a 10m-sized icy patch on the surface. The ejected material comprised refractory grains of several hundred microns in size, and sub-micron-sized water ice grains. The high dust mass production rate is incompatible with the free sublimation of crystalline water ice under solar illumination as the only acceleration process. Additional energy stored near the surface must have increased the gas density. We suggest a pressurized sub-surface gas reservoir, or the crystallization of amorphous water ice as possible causes.


Monthly Notices of the Royal Astronomical Society | 2017

The footprint of cometary dust analogues – I. Laboratory experiments of low-velocity impacts and comparison with Rosetta data

L. E. Ellerbroek; Bastian Gundlach; A. Landeck; C. Dominik; J. Blum; S. Merouane; Martin Hilchenbach; Mark Stephen Bentley; Thurid Mannel; H. John; H. A. van Veen

Cometary dust provides a unique window on dust growth mechanisms duringthe onset of planet formation. Measurements by the Rosetta spacecraftshow that the dust in the coma of comet 67P/Churyumov-Gerasimenko has agranular structure at size scales from sub-μmup to several hundredsof μm, indicating hierarchical growth took place across these sizescales. However, these dust particles may have been modified duringtheir collection by the spacecraft instruments. Here, we present theresults of laboratory experiments that simulate the impact of dust onthe collection surfaces of the COSIMA (Cometary Secondary Ion MassAnaylzer) and MIDAS (Micro-Imaging Dust Analysis System) instrumentsonboard the Rosetta spacecraft. We map the size and structure of thefootprints left by the dust particles as a function of their initialsize (up to several hundred μm) and velocity (up to 6 ms-1). We find that in most collisions, only part of the dustparticle is left on the target; velocity is the main driver of theappearance of these deposits. A boundary between sticking/bouncing andfragmentation as an outcome of the particle-target collision is found atv ˜ 2 m s-1. For velocities below this value, particleseither stick or leave a single deposit on the target plate, or bounce,leaving a shallow footprint of monomers. At velocities >2 ms-1and sizes >80 μm, particles fragment upon collision,transferring up to 50 per cent of their mass in a rubble-pile-likedeposit on the target plate. The amount of mass transferred increaseswith the impact velocity. The morphologies of the deposits arequalitatively similar to those found by the COSIMA instrument.


Nature | 2015

Comet 67P/Churyumov-Gerasimenko sheds dust coat accumulated over the past four years

R. Schulz; Martin Hilchenbach; Yves Langevin; J. Kissel; Johan Silen; Christelle Briois; C. Engrand; Klaus Hornung; Donia Baklouti; Anaı̈s Bardyn; H. Cottin; Henning Fischer; Nicolas Fray; M. Godard; Harry J. Lehto; Léna Le Roy; S. Merouane; F.-R. Orthous-Daunay; John Paquette; Jouni Rynö; Sandra Siljeström; Oliver Stenzel; Laurent Thirkell; Kurt Varmuza; B. Zaprudin

Collaboration


Dive into the S. Merouane's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Schulz

European Space Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johan Silen

Finnish Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

Jouni Rynö

Finnish Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge