Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Mertes is active.

Publication


Featured researches published by S. Mertes.


Science | 2013

Enhanced Role of Transition Metal Ion Catalysis During In-Cloud Oxidation of SO2

E. Harris; B. Sinha; D. van Pinxteren; Andreas Tilgner; Khanneh Wadinga Fomba; Johannes Schneider; Arnd Roth; Thomas Gnauk; B. Fahlbusch; S. Mertes; T. Lee; Jeffrey L. Collett; Stephen F. Foley; S. Borrmann; Peter Hoppe; Hartmut Herrmann

Dust in the Clouds Sulfate aerosols have the greatest radiative impact on climate systems. Harris et al. (p. 727) report that the oxidation of sulfur dioxide gas, catalyzed by natural transition metal ions mostly on the surface of coarse mineral dust, is the dominant pathway for sulfate production in clouds. In view of the growing sulfur dioxide emissions from large, industrializing countries, including this process in climate models should improve the agreement between models and observations. Transition metal ions catalyze most of the oxidation of sulfur dioxide that occurs in clouds. Global sulfate production plays a key role in aerosol radiative forcing; more than half of this production occurs in clouds. We found that sulfur dioxide oxidation catalyzed by natural transition metal ions is the dominant in-cloud oxidation pathway. The pathway was observed to occur primarily on coarse mineral dust, so the sulfate produced will have a short lifetime and little direct or indirect climatic effect. Taking this into account will lead to large changes in estimates of the magnitude and spatial distribution of aerosol forcing. Therefore, this oxidation pathway—which is currently included in only one of the 12 major global climate models—will have a significant impact on assessments of current and future climate.


Aerosol Science and Technology | 2007

Counterflow Virtual Impactor Based Collection of Small Ice Particles in Mixed-Phase Clouds for the Physico-Chemical Characterization of Tropospheric Ice Nuclei: Sampler Description and First Case Study

S. Mertes; Bart Verheggen; Saskia Walter; Paul Connolly; Martin Ebert; Johannes Schneider; Keith N. Bower; J. Cozic; Stephan Weinbruch; Urs Baltensperger; E. Weingartner

A ground-based sampling system named Ice-CVI is introduced that is able to extract small ice particles with sizes between 5 and 20 μ m out of mixed-phase clouds. The instrument is based on a counterflow virtual impactor (CVI) removing interstitial particles and is supplemented by additional modules that pre-segregate other constituents of mixed-phase clouds. Ice particles of 20 μ m and smaller are expected to grow only by water vapor diffusion and there is a negligible probability that they scavenge aerosol particles by impaction and riming. Thus, their residuals which are released by the Ice-CVI can be interpreted as the original ice nuclei (IN). In a first field test within the Cloud and Aerosol Characterization Experiment (CLACE-3) at the high alpine research station Jungfraujoch, the collection behavior of the single components and the complete system was evaluated under atmospheric sampling conditions. By comparing parameters measured by the Ice-CVI with corresponding results obtained from other inlets or with in-situ instrumentation it is verified that the small ice particles are representatively collected whereas all other mixed phase cloud constituents are effectively suppressed. In a case study it is observed that super-micrometer particles preferentially serve as IN although in absolute terms the IN concentration is dominated by sub-micrometer particles. Mineral dust (Si), non-volatile organic matter and black carbon could be identified as IN components by means of different chemical analyses. The latter suggests an anthropogenic influence on the heterogeneous ice nucleation in supercooled, tropospheric clouds.


Journal of Geophysical Research | 2007

Aerosol partitioning between the interstitial and the condensed phase in mixed-phase clouds

Bart Verheggen; J. Cozic; E. Weingartner; Keith N. Bower; S. Mertes; Paul Connolly; Martin Gallagher; M. Flynn; T. W. Choularton; Urs Baltensperger

{[}1] The partitioning of aerosol particles between the cloud and the interstitial phase (i.e., unactivated aerosol) has been investigated during several Cloud and Aerosol Characterization Experiments (CLACE-3, CLACE-3 1/2 and CLACE-4) conducted in winter and summer 2004 and winter 2005 at the high alpine research station Jungfraujoch ( 3580 m altitude, Switzerland). Ambient air was sampled using different inlets in order to determine the activated fraction of aerosol particles, F(N), defined as the fraction of the total aerosol number concentration ( with particle diameter d(p) > 100 nm) that has been incorporated into cloud particles. The liquid and ice water content of mixed-phase clouds were characterized by analyzing multiple cloud probes. The dependence of the activated fraction on several environmental factors is discussed on the basis of more than 900 h of in-cloud observations and parameterizations for key variables are given. FN is found to increase with increasing liquid water content and to decrease with increasing particle number concentration in liquid clouds. FN also decreases with increasing cloud ice mass fraction and with decreasing temperature from 0 to -25 degrees C. The Wegener-Bergeron-Findeisen process probably contributed to this trend, since the presence of ice crystals causes liquid droplets to evaporate, thus releasing the formerly activated particles back into the interstitial phase. Ice nucleation could also have prevented additional cloud condensation nuclei from activating. The observed activation behavior has significant implications for our understanding of the indirect effect of aerosols on climate.


Bulletin of the American Meteorological Society | 2016

ACRIDICON–CHUVA Campaign: Studying Tropical Deep Convective Clouds and Precipitation over Amazonia Using the New German Research Aircraft HALO

Manfred Wendisch; Ulrich Pöschl; Meinrat O. Andreae; Luiz A. T. Machado; Rachel I. Albrecht; Hans Schlager; Daniel Rosenfeld; Scot T. Martin; Ahmed Abdelmonem; Armin Afchine; Alessandro C. Araújo; Paulo Artaxo; Heinfried Aufmhoff; Henrique M. J. Barbosa; Stephan Borrmann; Ramon Campos Braga; Bernhard Buchholz; Micael A. Cecchini; Anja Costa; Joachim Curtius; Maximilian Dollner; Marcel Dorf; V. Dreiling; Volker Ebert; André Ehrlich; Florian Ewald; Gilberto Fisch; Andreas Fix; Fabian Frank; Daniel Fütterer

AbstractBetween 1 September and 4 October 2014, a combined airborne and ground-based measurement campaign was conducted to study tropical deep convective clouds over the Brazilian Amazon rain forest. The new German research aircraft, High Altitude and Long Range Research Aircraft (HALO), a modified Gulfstream G550, and extensive ground-based instrumentation were deployed in and near Manaus (State of Amazonas). The campaign was part of the German–Brazilian Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems–Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitation Measurement) (ACRIDICON– CHUVA) venture to quantify aerosol–cloud–precipitation interactions and their thermodynamic, dynamic, and radiative effects by in situ and remote sensing measurements over Amazonia. The ACRIDICON–CHUVA field observations were carried out in cooperation with the second intensive operating period...


Journal of Applied Meteorology | 1996

Vertical Profiles of Aerosol and Radiation and the Influence of a Temperature Inversion: Measurements and Radiative Transfer Calculations

Manfred Wendisch; S. Mertes; A. Ruggaber; T. Nakajima

Abstract The results of an airborne experiment performed near Monchengladbach (Germany) in November 1993 are reported. Besides meteorological data, vertical profiles of aerosol properties (number concentration, size distribution) and radiation (downwelling solar and UV irradiance, JNO2 photolysis frequency) under cloudless conditions are presented, and the influence of a strong temperature inversion is studied. From the measured vertical profiles of the aerosol size distribution, single-scattering properties of the particles (volume scattering coefficient, asymmetry parameter, backscattering ratio) are calculated. On the basis of the aerosol and meteorological measurements, detailed radiative transfer calculations are performed in order to model vertical profiles of the downwelling UV irradiance and JNO2 photolysis frequency. The data of the calculated UV irradiance mostly agree with the measured values within the range given by the measurement errors. Introducing moderate absorption into the model improv...


Bulletin of the American Meteorological Society | 2017

ML-CIRRUS - The airborne experiment on natural cirrus and contrail cirrus with the high-altitude long-range research aircraft HALO

Christiane Voigt; Ulrich Schumann; Andreas Minikin; Ahmed Abdelmonem; Armin Afchine; Stephan Borrmann; Maxi Boettcher; Bernhard Buchholz; Luca Bugliaro; Anja Costa; Joachim Curtius; Maximilian Dollner; Andreas Dörnbrack; V. Dreiling; Volker Ebert; André Ehrlich; Andreas Fix; Linda Forster; Fabian Frank; Daniel Fütterer; Andreas Giez; Kaspar Graf; J.-U. Grooß; Silke Groß; Katharina Heimerl; Bernd Heinold; Tilman Hüneke; Emma Järvinen; Tina Jurkat; Stefan Kaufmann

AbstractThe Midlatitude Cirrus experiment (ML-CIRRUS) deployed the High Altitude and Long Range Research Aircraft (HALO) to obtain new insights into nucleation, life cycle, and climate impact of natural cirrus and aircraft-induced contrail cirrus. Direct observations of cirrus properties and their variability are still incomplete, currently limiting our understanding of the clouds’ impact on climate. Also, dynamical effects on clouds and feedbacks are not adequately represented in today’s weather prediction models.Here, we present the rationale, objectives, and selected scientific highlights of ML-CIRRUS using the G-550 aircraft of the German atmospheric science community. The first combined in situ–remote sensing cloud mission with HALO united state-of-the-art cloud probes, a lidar and novel ice residual, aerosol, trace gas, and radiation instrumentation. The aircraft observations were accompanied by remote sensing from satellite and ground and by numerical simulations.In spring 2014, HALO performed 16 f...


Bulletin of the American Meteorological Society | 2012

In Situ, Airborne Instrumentation: Addressing and Solving Measurement Problems in Ice Clouds

D. Baumgardner; Linnea M. Avallone; Aaron Bansemer; St. Borrmann; P. R. A. Brown; Ulrich Bundke; Patrick Y. Chuang; Daniel J. Cziczo; P. R. Field; Martin Gallagher; Jean-François Gayet; Andrew J. Heymsfield; A. Korolev; Martina Krämer; Greg M. McFarquhar; S. Mertes; O. Möhler; S. Lance; P. Lawson; D. Petters; Kerri A. Pratt; G. C. Roberts; D. C. Rogers; O. Stetzer; Jeffrey L. Stith; W. Strapp; Cynthia H. Twohy; Manfred Wendisch

A meeting of 31 international experts on in situ measurements from aircraft was held to identify unresolved questions concerning ice formation and evolution in ice clouds, assess the current state of instrumentation that can address these problems, introduce emerging technology that may overcome current measurement issues and recommend future courses of action that can improve our understanding of ice cloud microphysical processes and their impact on the environment. The meeting proceedings and outcome has been described in detail in a manuscript submitted to the Bulletin of the American Meteorological Society (BAMS) on March 24, 2011. This paper is currently under review. The remainder of this summary, in the following pages, is the text of the BAMS article. A technical note that will be published by the National Center for Atmospheric Research is currently underway and is expected to be published before the end of the year.


Atmospheric Research | 2001

The Cloud Ice Mountain Experiment (CIME) 1998: experiment overview and modelling of the microphysical processes during the seeding by isentropic gas expansion

Wolfram Wobrock; Andrea I. Flossmann; Marie Monier; Jean-Marc Pichon; Laurent Cortez; Jean-François Fournol; Alfons Schwarzenböck; S. Mertes; Jost Heintzenberg; P. Laj; G. Orsi; L. Ricci; S. Fuzzi; Harry ten Brink; P. Jongejan; R. Otjes

The second field campaign of the Cloud Ice Mountain Experiment (CIME) project took place in February 1998 on the mountain Puy de Dome in the centre of France. The content of residual aerosol particles, of H2O2 and NH3 in cloud droplets was evaluated by evaporating the drops larger than 5 μm in a Counterflow Virtual Impactor (CVI) and by measuring the residual particle concentration and the released gas content. The same trace species were studied behind a round jet impactor for the complementary interstitial aerosol particles smaller than 5 μm diameter. In a second step of experiments, the ambient supercooled cloud was converted to a mixed phase cloud by seeding the cloud with ice particles by the gas release from pressurised gas bottles. A comparison between the physical and chemical characteristics of liquid drops and ice particles allows a study of the fate of the trace constituents during the presence of ice crystals in the cloud. In the present paper, an overview is given of the CIME 98 experiment and the instrumentation deployed. The meteorological situation during the experiment was analysed with the help of a cloud scale model. The microphysics processes and the behaviour of the scavenged aerosol particles before and during seeding are analysed with the detailed microphysical model ExMix. The simulation results agreed well with the observations and confirmed the assumption that the Bergeron–Findeisen process was dominating during seeding and was influencing the partitioning of aerosol particles between drops and ice crystals. The results of the CIME 98 experiment give an insight on microphysical changes, redistribution of aerosol particles and cloud chemistry during the Bergeron–Findeisen process when acting also in natural clouds.


Atmospheric Research | 2001

Changes of cloud microphysical properties during the transition from supercooled to mixed-phase conditions during CIME

S. Mertes; Alfons Schwarzenböck; P. Laj; Wolfram Wobrock; Jean-Marc Pichon; G. Orsi; Jost Heintzenberg

A ground-based seeding experiment using carbon dioxide and propane sprayed from pressurized bottles was carried out under supercooled cloud conditions on a small spatial and short time scale. Water vapor deposition on the artificially generated dry ice and propane ice germs as the main ice formation process (nucleation and growth) is consistent with the experimental results. After nucleation, diffusional growth of the ice particles, partly at the expense of evaporating small droplets, was identified during the mixing of the seeding line with the ambient supercooled cloud. Within the seeding plume, ice water contents up to 80% of the total condensed water are observed, although the size of the formed ice particles did not exceed 25 μm. From the changes of the ice and supercooled liquid phase with time under mixed-phase conditions, liquid water content (LWC) evaporation, ice water content (IWC) formation, and ice crystal growth rates are estimated, which are not affected by the artificial nucleation process. Thus, these rates are assessed to be applicable for a growing ice phase of small ice particles in a young mixed-phase cloud, where other growth mechanisms, like riming or aggregation, are negligible.


Atmospheric Research | 2001

Impact of the Bergeron–Findeisen process on the release of aerosol particles during the evolution of cloud ice

Alfons Schwarzenböck; S. Mertes; Jost Heintzenberg; Wolfram Wobrock; P. Laj

Abstract The paper focuses on the redistribution of aerosol particles (APs) during the artificial nucleation and subsequent growth of ice crystals in a supercooled cloud. A significant number of the supercooled cloud droplets during icing periods (seeding agents: C 3 H 8 , CO 2 ) did not freeze as was presumed prior to the experiment but instead evaporated. The net mass flux of water vapour from the evaporating droplets to the nucleating ice crystals (Bergeron–Findeisen mechanism) led to the release of residual particles that simultaneously appeared in the interstitial phase. The strong decrease of the droplet residuals confirms the nucleation of ice particles on seeding germs without natural aerosol particles serving as ice nuclei. As the number of residual particles during the seedings did not drop to zero, other processes such as heterogeneous ice nucleation, spontaneous freezing, entrainment of supercooled droplets and diffusion to the created particle-free ice germs must have contributed to the experimental findings. During the icing periods, residual mass concentrations in the condensed phase dropped by a factor of 1.1–6.7, as compared to the unperturbed supercooled cloud. As the Bergeron–Findeisen process also occurs without artificial seeding in the atmosphere, this study demonstrated that the hydrometeors in mixed-phase clouds might be much cleaner than anticipated for the simple freezing process of supercooled droplets in tropospheric mid latitude clouds.

Collaboration


Dive into the S. Mertes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joachim Curtius

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge