Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Niranjan Raj is active.

Publication


Featured researches published by S. Niranjan Raj.


Crop Protection | 2003

Comparative performance of formulations of plant growth promoting rhizobacteria in growth promotion and suppression of downy mildew in pearl millet

S. Niranjan Raj; S.A. Deepak; P. Basavaraju; H. S. Shetty; M. S. Reddy; Joseph W. Kloepper

Five plant growth promoting rhizobacterial formulations, each consisting of two Bacilli strains with chitosan as a carrier were tested for their capacity to promote growth and induce resistance against downy mildew in pearl millet under both greenhouse and field conditions. Three modes of applications were tested: seed treatment, soil amendment, and seed treatment+soil amendment. In general, irrespective of application method, most of the formulations, in comparison with the control, increased plant growth and vigor as measured by seed germination, seedling vigor, plant height, fresh and dry weight, leaf area, tillering capacity, number of earheads, length and girth of earhead, 1000 seed weight and yield. The time of flowering was also advanced by 4–5 days over the control. Likewise all the formulations significantly reduced downy mildew incidence relative to the nontreated control. However, the rate of growth enhancement and disease suppression varied considerably with the formulations. Formulations LS256 and LS257 besides being the best growth promoters were also the most efficient resistance inducers. None of the formulations matched the level of the fungicide metalaxyl in offering protection against downy mildew. Among the application methods tested, soil amendment was found to be the most suitable and desirable way of delivering the formulations. Combination of seed treatment and soil amendment produced the same effect that was produced by soil amendment alone. The study demonstrates a potential role for plant growth promoting rhizobacterial formulations in downy mildew management.


Functional Plant Biology | 2006

Induction and accumulation of polyphenol oxidase activities as implicated in development of resistance against pearl millet downy mildew disease

S. Niranjan Raj; B. R. Sarosh; H. S. Shetty

Polyphenol oxidase (PPO) activity was analysed in seedlings of resistant and susceptible pearl millet [Pennisetum glaucum (L.) R.Br] cultivars with or without inoculation of the downy mildew pathogen Sclerospora graminicola (Sacc.) Schroet. Seedlings of resistant varieties had greater PPO activity than susceptible seedlings, and inoculated seedlings had significantly higher PPO levels than uninoculated seedlings. Temporal accumulation of PPO showed a maximum activity at 24 h post-inoculation in resistant seedlings, whereas in susceptible seedlings it peaked at 48 h. PPO activity was positively correlated with levels of downy mildew resistance in different pearl millet cultivars under field conditions. Native PAGE staining showed four isoforms of PPO, which were differentially induced in relation to the time of appearance and intensities in the uninoculated seedlings, whereas a fifth PPO isoform appeared after inoculation with S. graminicola. PPO activity was significantly higher in the shoot and leaves of pearl millet than in the root. Tissue printing analysis of the enzyme expression showed that the enzyme is predominantly expressed after pathogen inoculation and is localised in the epidermal and vascular regions. Temporal analysis of transcript accumulation showed that in resistant seedlings PPO mRNAs was expressed earlier and more abundantly than in susceptible seedlings. Our studies demonstrate, for the first time, that PPO is actively involved in plant defence and can be used as a marker of resistance to downy mildew infection in pearl millet.


Plant Disease | 2003

Induction of Growth Promotion and Resistance Against Downy Mildew on Pearl Millet (Pennisetum glaucum) by Rhizobacteria

S. Niranjan Raj; G. Chaluvaraju; K. N. Amruthesh; H. S. Shetty; M. S. Reddy; Joseph W. Kloepper

A series of laboratory, greenhouse, and field experiments were conducted to evaluate seven strains of plant growth-promoting rhizobacteria (PGPR). The PGPR were tested as suspensions of fresh cultures and talc-based powder formulations. Evaluations were conducted on pearl millet (Pennisetum glaucum) for growth promotion and management of downy mildew caused by Sclerospora graminicola. All treatments with fresh suspensions and powdered formulations showed enhancement in germination and vigor index over the respective untreated controls. With fresh suspensions, maximum vigor index resulted from treatments by Bacillus pumilus strain INR7 followed by B. subtilis strain IN937b (64 and 38% higher than the untreated control, respectively). With powdered formulation, treatment with strain INR7 also resulted in the highest germination and vigor indexes, which were 10 and 63%, respectively, over the untreated control. Under experimental plot conditions, prominent enhancement in growth also was observed in the disease tests. Yield was enhanced 40 and 37% over the untreated control by seed treatment with powdered formulations of strains INR7 and SE34, respectively. The same strains also increased yield by 36 and 33%, respectively, when applied as fresh suspensions. Studies on downy mildew management resulted in varied degrees of protection by the PGPR both under greenhouse and field conditions. With fresh suspensions, treatment with INR7 resulted in the highest protection (57%), followed by B. pumilus strain SE34 and B. subtilis strain GBO3, which resulted in 50 and 43% protection, respectively, compared with the untreated control. With powdered formulation, PGPR strain INR7 suppressed downy mildew effectively, resulting in 67% protection, while SE34 resulted in 58% protection, followed by GBO3 with 56% protection. Treatment with Apron (Metalaxyl) resulted in the highest protection against downy mildew under both greenhouse and field conditions. Thus, the present study suggests that the tested PGPR, both as powdered formulations and fresh suspensions, can be used within pearl millet downy mildew management strategies and for plant growth promotion.


Archive | 2005

Plant Growth Promoting Rhizobacteria: Potential Green Alternative for Plant Productivity

S. Niranjan Raj; H. S. Shetty; M. S. Reddy

Use of plant growth promoting rhizobacteria (PGPR) for the benefits of agriculture is gaining worldwide importance and acceptance and appears to be the trend for the future. PGPR are bioresources which may be viewed as a novel and potential tool for providing substantial benefits to the agriculture. These beneficial, free-living bacteria enhance emergence, colonize roots, stimulate growth and enhance yield. PGPR are known to induce resistance against various plant pathogens in different crops ranging from cereals, pulses, ornamentals, vegetables, plantation crops, spices and some trees. Most studies have emphasized exploration and potential benefits of PGPR in agriculture, horticulture and forestry. The plausible mechanisms adopted by these rhizobacteria in growth promotion and resistance, though abundantly documented but still remains to be fully explored. Integrated use of PGPR allows the combination of various mechanisms thereby enhancing their beneficial abilities. However, their use has not been to the full potential due to inconsistency in their performance and their commercialization limited to few developed countries. Use of PGPR as bioinoculants, biofertilizers and biocontrol agents, advantages and disadvantages, practical potential in improved agriculture and future prospects are also discussed.


Archives of Phytopathology and Plant Protection | 2010

Seed biopriming with novel strain of Trichoderma harzianum for the control of toxigenic Fusarium verticillioides and fumonisins in maize

S. Chandra Nayaka; S. R. Niranjana; A.C. Uday Shankar; S. Niranjan Raj; M. S. Reddy; H. S. Prakash; C. N. Mortensen

Fusarium verticillioides is one of the most important fungal pathogens in maize causing both pre- and post-harvest losses and also capable of producing Fumonisins. In the present study attempts have been made for screening potential T. harzianum from native rhizosphere and to study its effect on Fusarium ear rot disease, fumonisin accumulation in different maize cultivars grown in India. Eight isolates of T. harzianum were isolated and T. harzianum isolate Th-8 exhibited better antifungal activity than carbendizim. Th-8 was formulated in different solid substrates like wheat bran, paddy husk, talcum powder and cornstarch. Maize seeds of kanchan (moderately resistant), pioneer (resistant) and sweet corn (susceptible) were selected for laboratory and field studies and these seeds were treated with a conidial suspension of T. harzianum at the rate of 1 × 108 spore/ml and formulation at the rate of 10 g/kg. Treated seeds were subjected to evaluate F. verticillioides incidence, seed germination, seedling vigour and field emergence, yield, thousand seed weight and fumonisin production. It was found that the pure culture of T. harzianum was more effective in reducing the F. verticillioides and fumonisin incidence followed by Talc formulation than the carbendizim treated and untreated control. Formulations of T. harzianum were effective at reducing the F. verticillioides and Fumonisin infection and also increasing the seed germination, vigour index, field emergence, yield, and thousand seed weight in comparison with the control.


Biocontrol | 2005

Synergistic effects of Trichoshield on enhancement of growth and resistance to downy mildew in pearl millet

S. Niranjan Raj; Nandini P. Shetty; H. S. Shetty

Trichoshield, a talc formulation consisting of spores of Trichodermaharzianum, Trichodermalignorum, Gliocladiumvirens and Bacillussubtilis was tested, following different application methods, for its ability to promote growth of pearl millet plants and to induce resistance to downy mildew of pearl millet. Under laboratory conditions, trichoshield seed treatment enhanced seed germination and seedling vigor of pearl millet significantly over the control; under greenhouse conditions vegetative growth parameters like height, fresh and dry weight, leaf area and number of tillers were significantly enhanced over the control: Trichoshield formulation offered greater protection against downy mildew in comparison with individual strains of T. harzianum, T. lignorum, G. virensand B. subtilis. Among the methods of application, foliar spray was found to be a more efficient delivery method than seed treatment or slurry treatment. Combinations of foliar spray with seed treatment and slurry treatment produced the same effect as foliar spray alone. Under field conditions, trichoshield treatment enhanced reproductive parameters like number of earheads, length and girth of earheads, 1000 seed weight and yield significantly over the control. Days required for 50% flowering was reduced by 4 days compared to the control. Yield enhancement of 28% over the control was highly significant. Trichoshield treatment offered protection ranging from 52 to 71% under field conditions, depending on the application method. However, the chemical fungicide metalaxyl Apron provided the highest protection against downy mildew, both under greenhouse and field conditions.


Journal of Plant Interactions | 2010

Seed treatment with aqueous extract of Viscum album induces resistance to pearl millet downy mildew pathogen

Chandrashekhara; S. Niranjan Raj; G. Manjunath; Shantharaj Deepak; H. Shekar Shetty

Abstract Downy mildew (Sclerospora graminicola [Sacc.] Schroet.) is a serious agricultural problem for pearl millet (Pennisetum glaucum [L.] R. Br.) grain production under field conditions. Six medicinally important plant species Azadirachta indica, Argemone mexicana, Commiphora caudata, Mentha piperita, Emblica officinalis and Viscum album were evaluated for their efficacy against pearl millet downy mildew. Seeds of pearl millet were treated with different concentrations of aqueous extract of the plants to examine their efficacy in controlling downy mildew. Among the plant extracts tested, V. album treatment was found to be more effective in enhancing seed quality parameters and also in inducing resistance against downy mildew disease. Germination and seedling vigor was improved in seeds treated with V. album extracts over control. Seeds treated with 10% concentration of V. album showed maximum protection against downy mildew disease under greenhouse and field conditions. The downy mildew disease protection varied from 44–70% with different concentrations. Leaf extract of V. album did not inhibit sporulation and zoospore release from sporangia of Sclerospora graminicola, indicating that the disease-controlling effect was attributed to induced resistance. Seed treatment with V. album extract increased pearl millet grain yield considerably. In V. album, treated pearl millet seedlings increased activities of peroxidase, and phenylalanine ammonia-lyase enzyme was detected. FTIR analysis of V. album extracts showed the presence of amides and other aromatic compounds which are antimicrobial compounds involved in plant defense.


Acta Biochimica et Biophysica Sinica | 2012

Polygalacturonase-inhibitor proteins in pearl millet: possible involvement in resistance against downy mildew.

S. Ashok Prabhu; K. Ramachandra Kini; S. Niranjan Raj; Bruno M. Moerschbacher; H. S. Shetty

Polygalacturonase-inhibitor protein (PGIP) is a defense protein found in plant cell walls. It prevents the degradation of pectin by modulating the endo-polygalacturonase activity. The present study has used heterologous anti-bean PGIP probes to investigate the role of PGIP in pearl millet [Pennisetum glaucum (L) R. Br.] resistance against downy mildew caused by oomycete pathogen Sclerospora graminicola (Sacc.) Schroet. Northern blot analysis using bean pgip2 DNA fragment as probe showed an early and marked induction of transcripts (∼1.2 kb) upon pathogen-inoculation in pearl millet cultivar resistant to downy mildew, with the maximum level observed at 24 and 48 h post-inoculation (h.p.i.). Western blot analysis of pearl millet total cell wall proteins using antibodies against bean PGIP showed the presence of a major band of ∼43 kDa, and several minor ones. The protein accumulation was higher in resistant seedlings than in susceptible seedlings with a differential expression observed only in the case of incompatible interaction. Immunocytochemical localization in epidermal peelings of coleoptiles and tissue-printing showed a similar trend in the PGIP accumulation. PGIP was found to localize in the epidermal as well as in the vascular regions of tissues. Higher accumulation was observed in the stomatal guard cells of resistant cultivar inoculated with the pathogen. PGIP activity of pearl millet total protein extracts when assayed against Aspergillus niger PG displayed differential PG inhibitory activities between the resistant and suceptible cultivars with resistant sample showing the highest inhibition of 16%, post-pathogen treatment. Thus, PGIP appeared to be an important player in pearl millet-S. graminicola interaction leading to host resistance.


Archives of Phytopathology and Plant Protection | 2012

Comparative analysis of activities of vital defence enzymes during induction of resistance in pearl millet against downy mildew

S.N. Lavanya; S. Niranjan Raj; A. C. Udayashankar; K.R. Kini; K. N. Amruthesh; S. R. Niranjana; H. S. Shetty

Pearl millet [Pennisetum glaucum (L.) R. Br.] has the seventh largest annual production in the world giving it significant economic importance. Although generally well adapted to the growing conditions in arid and semi-arid regions, major constraints to yields are susceptibility to downy mildew disease caused by the oomycete Sclerospora graminicola (Sacc.) Schroet. Induction of resistance against downy mildew disease of pearl millet has been well established using various biotic and abiotic inducers. The present study demonstrated the comparative analysis of the involvement of the important defence enzymes like β-1,3-Glucanase, chitinase, phenylalanine ammonia-lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO) and lipoxygenase (LOX) during induced systemic resistance (ISR) mediated by inducers like Benzo(1,2,3)-thiadiazole-7-carbothionic acid-S-methyl ester (BTH), Beta amino butyric acid (BABA), Chitosan and Cerebroside against pearl millet downy mildew disease. Native-PAGE showed six POX isozymes in all categories of uninoculated pearl millet seedlings and maximum intensity of bands was noticed in resistant seedlings. After inoculation in Cerebroside-treated seedlings, there were seven isoforms, POX-4 was not present in any other seedlings. Native-PAGE analysis showed the presence of five PPO isozymes in all categories of uninoculated pearl millet seedlings and after inoculation seven isoforms of PPO-7 were noticed, and the intensity of banding was more in resistant and Cerebroside-treated seedlings. The isoforms PPO-3 were present as an extra band after inoculation in all seedlings. Isoform PPO-7, though found in all seedlings, was very prominent in Chitosan- and Cerebroside-treated seedlings. β-1,3-Glucanase Native-PAGE analysis showed the presence of only one isozyme in all categories of uninoculated/inoculated pearl millet seedlings. Glu-1 isozyme was very prominent in all seedlings including resistant and susceptible seedlings. Among the induced resistant seedlings, highest intensity was observed in Cerebroside-treated seedlings. Native-PAGE analysis showed the presence of three LOX isozymes in all categories of uninoculated pearl millet seedlings, and the intensity of banding pattern was very low in BTH-treated seedlings. LOX-1 and LOX-2 were very prominent in resistant, Chitosan- and Cerebroside-treated seedlings. Upon inoculation, one extra band, LOX-3, was exclusively noticed in Cerebroside-treated seedlings. In inoculated seedlings, LOX-1, LOX-2 and LOX-4 were very prominent in Chitosan Cerebroside-treated seedlings compared to other seedlings.


Crop Protection | 2004

A Chitosan formulation Elexa™ induces downy mildew disease resistance and growth promotion in pearl millet

R. G. Sharathchandra; S. Niranjan Raj; Nandini P. Shetty; K. N. Amruthesh; H. Shekar Shetty

Collaboration


Dive into the S. Niranjan Raj's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge