S. Orsi
University of Geneva
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. Orsi.
Nature | 2009
O. Adriani; G. C. Barbarino; G. A. Bazilevskaya; R. Bellotti; M. Boezio; E. A. Bogomolov; L. Bonechi; M. Bongi; V. Bonvicini; S. Bottai; A. Bruno; F. Cafagna; D. Campana; Per Carlson; M. Casolino; G. Castellini; M. P. De Pascale; G. De Rosa; N. De Simone; V. Di Felice; A. M. Galper; L. Grishantseva; P. Hofverberg; S. V. Koldashov; S. Y. Krutkov; A. Leonov; V. Malvezzi; L. Marcelli; W. Menn; V. V. Mikhailov
Antiparticles account for a small fraction of cosmic rays and are known to be produced in interactions between cosmic-ray nuclei and atoms in the interstellar medium, which is referred to as a ‘secondary source’. Positrons might also originate in objects such as pulsars and microquasars or through dark matter annihilation, which would be ‘primary sources’. Previous statistically limited measurements of the ratio of positron and electron fluxes have been interpreted as evidence for a primary source for the positrons, as has an increase in the total electron+positron flux at energies between 300 and 600 GeV (ref. 8). Here we report a measurement of the positron fraction in the energy range 1.5–100 GeV. We find that the positron fraction increases sharply over much of that range, in a way that appears to be completely inconsistent with secondary sources. We therefore conclude that a primary source, be it an astrophysical object or dark matter annihilation, is necessary.
Nature | 2008
O. Adriani; G. C. Barbarino; G. De Rosa; A. M. Galper; G. Vasilyev; Y. T. Yurkin; P. Carlson; M. Simon; S. V. Koldashov; M. Pearce; A. Leonov; M. Boezio; A. Bruno; S. Orsi; Bonvicini; M. Bongi; L. Bonechi; N. Zampa; Mikhailov; P. Spillantini; S. B. Ricciarini; E. Vannuccini; P. Papini; G. A. Bazilevskaya; F. Cafagna; P. Picozza; G. Osteria; N. De Simone; S. Bottai; L. Marcelli
Antiparticles account for a small fraction of cosmic rays and are known to be produced in interactions between cosmic-ray nuclei and atoms in the interstellar medium, which is referred to as a ‘secondary source’. Positrons might also originate in objects such as pulsars and microquasars or through dark matter annihilation, which would be ‘primary sources’. Previous statistically limited measurements of the ratio of positron and electron fluxes have been interpreted as evidence for a primary source for the positrons, as has an increase in the total electron+positron flux at energies between 300 and 600 GeV (ref. 8). Here we report a measurement of the positron fraction in the energy range 1.5–100 GeV. We find that the positron fraction increases sharply over much of that range, in a way that appears to be completely inconsistent with secondary sources. We therefore conclude that a primary source, be it an astrophysical object or dark matter annihilation, is necessary.
Physical Review Letters | 2009
O. Adriani; G. C. Barbarino; G. A. Bazilevskaya; R. Bellotti; M. Boezio; Edward Bogomolov; L. Bonechi; M. Bongi; V. Bonvicini; S. Bottai; A. Bruno; F. Cafagna; D. Campana; P. Carlson; M. Casolino; G. Castellini; M. P. De Pascale; G. De Rosa; D. Fedele; A. M. Galper; L. Grishantseva; P. Hofverberg; A. Leonov; S. V. Koldashov; S. Y. Krutkov; V. Malvezzi; L. Marcelli; W. Menn; V. V. Mikhailov; M. Minori
A new measurement of the cosmic-ray antiproton-to-proton flux ratio between 1 and 100 GeV is presented. The results were obtained with the PAMELA experiment, which was launched into low-Earth orbit on-board the Resurs-DK1 satellite on June 15th 2006. During 500 days of data collection a total of about 1000 antiprotons have been identified, including 100 above an energy of 20 GeV. The high-energy results are a tenfold improvement in statistics with respect to all previously published data. The data follow the trend expected from secondary production calculations and significantly constrain contributions from exotic sources, e.g., dark matter particle annihilations.
Proceedings of SPIE | 2014
Sn Zhang; O. Adriani; Sebastiano Albergo; G. Ambrosi; Q. An; Tianwei Bao; R. Battiston; Xiaojun Bi; Z. Cao; Junying Chai; Jin Chang; G. M. Chen; Y. Chen; Xh Cui; Z. Dai; Raffaello D'Alessandro; Yongwei Dong; Yizhong Fan; C. Q. Feng; H. Feng; Zy Feng; Xh Gao; F. Gargano; N. Giglietto; Qb Gou; Yq Guo; Bl Hu; Hb Hu; Hh He; G. S. Huang
The High Energy cosmic-Radiation Detection (HERD) facility is one of several space astronomy payloads of the cosmic lighthouse program onboard Chinas Space Station, which is planned for operation starting around 2020 for about 10 years. The main scientific objectives of HERD are indirect dark matter search, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. HERD is composed of a 3-D cubic calorimeter (CALO) surrounded by microstrip silicon trackers (STKs) from five sides except the bottom. CALO is made of about 104 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. The top STK microstrips of seven X-Y layers are sandwiched with tungsten converters to make precise directional measurements of incoming electrons and gamma-rays. In the baseline design, each of the four side SKTs is made of only three layers microstrips. All STKs will also be used for measuring the charge and incoming directions of cosmic rays, as well as identifying back scattered tracks. With this design, HERD can achieve the following performance: energy resolution of 1% for electrons and gamma-rays beyond 100 GeV, 20% for protons from 100 GeV to 1 PeV; electron/proton separation power better than 10-5; effective geometrical factors of >3 m2sr for electron and diffuse gamma-rays, >2 m2sr for cosmic ray nuclei. R and D is under way for reading out the LYSO signals with optical fiber coupled to image intensified CCD and the prototype of one layer of CALO.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2010
Estela Suarez-Garcia; D. Haas; Wojtek Hajdas; G. Lamanna; C. Lechanoine-Leluc; R. Marcinkowski; A. Mtchedlishvili; S. Orsi; M. Pohl; N. Produit; D. Rapin; D. Rybka; J. P. Vialle
The hard X-ray polarimeter POLAR aims to measure the linear polarization of the 50–500 keV photons arriving from the prompt emission of γ-ray bursts (GRBs). The position in the sky of the detected GRBs is needed to determine their level of polarization. We present here a method by which, despite of the polarimeter incapability of taking images, GRBs can be roughly localized using POLAR alone. For this purpose scalers are attached to the output of the 25 multi-anode photomultipliers (MAPMs) that collect the light from the POLAR scintillator target. Each scaler measures how many GRB photons produce at least one energy deposition above 50 keV in the corresponding MAPM. Simulations show that the relative outputs of the 25 scalers depend on the GRB position. A database of very strong GRBs simulated at 10 201 positions has been produced. When a GRB is detected, its location is calculated searching the minimum of the χ2χ2 obtained in the comparison between the measured scaler pattern and the database. This GRB localization technique brings enough accuracy so that the error transmitted to the 100% modulation factor is kept below 10% for GRBs with fluence Ftot≥10−5ergcm−2. The POLAR localization capability will be useful for those cases where no other instruments are simultaneously observing the same field of view.
International Journal of Modern Physics A | 2005
Y. I. Stozhkov; A. Basili; R. Bencardino; M. Casolino; M. P. De Pascale; G. Furano; A. Menicucci; M. Minori; A. Morselli; P. Picozza; R. Sparvoli; R. Wischnewski; A. Bakaldin; A. M. Galper; S. V. Koldashov; M. Korotkov; V. V. Mikhailov; S. A. Voronov; Y. T. Yurkin; O. Adriani; L. Bonechi; M. Bongi; P. Papini; S. B. Ricciarini; P. Spillantini; S. Straulino; F. Taccetti; E. Vannuccini; G. Castellini; M. Boezio
Results of calibration of the PAMELA instrument at the CERN facilities are discussed. In September, 2003, the calibration of the Neutron Detector together with the Calorimeter was performed with th ...
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2018
N. Produit; Tianwei Bao; T. Batsch; T. Bernasconi; I. Britvich; F. Cadoux; I. Cernuda; Junying Chai; Yongwei Dong; N. Gauvin; Wojtek Hajdas; Merlin Kole; M. N. Kong; R. Kramert; Li Li; Jing Liu; X. Liu; R. Marcinkowski; S. Orsi; M. Pohl; D. Rapin; D. Rybka; A. Rutczynska; Haoli Shi; P. Socha; Jianchao Sun; Longlong Song; Jacek Szabelski; I. Traseira; Hualin Xiao
Abstract The POLAR detector is a space based Gamma Ray Burst (GRB) polarimeter with a wide field of view, which covers almost half the sky. The instrument uses Compton scattering of gamma rays on a plastic scintillator hodoscope to measure the polarization of the incoming photons. The instrument has been successfully launched on board of the Chinese space laboratory Tiangong 2 on September 15, 2016. The construction of the instrument components is described in this article. Details are provided on problems encountered during the construction phase and their solutions. Initial performance of the instrument in orbit is as expected from ground tests and Monte Carlo simulation.
Journal of Physics: Conference Series | 2008
Mirko Boezio; O. Adriani; M. Ambriola; G. C. Barbarino; A. Basili; G.A. Bazilevskaja; R. Bellotti; E. A. Bogomolov; L. Bonechi; M. Bongi; L. Bongiorno; V. Bonvicini; A. Bruno; F. Cafagna; D. Campana; P. Carlson; M. Casolino; G. Castellini; M. P. De Pascale; G. De Rosa; V. Di Felice; D. Fedele; A. M. Galper; P. Hofverberg; S. V. Koldashov; S. Y. Krutkov; J. Lundquist; O. Maksumov; V. Malvezzi; L. Marcelli
On the 15th of June 2006 the PAMELA experiment, mounted on the Resurs DK1 satellite, was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. PAMELA is a satellite ...
Proceedings of SPIE | 2014
S. Orsi; F. Cadoux; Catherine Leluc; Mercedes Paniccia; M. Pohl; D. Rapin; N. Gauvin; N. Produit; Tianwei Bao; Junying Chai; Yongwei Dong; M. N. Kong; Li Lu; Jiangtao Liu; Xin Liu; Haoli Shi; Jianchao Sun; Ruijie Wang; X. Wen; Bobing Wu; Hualin Xiao; Hanhui Xu; Li Zhang; Laiyu Zhang; Shuang-Nan Zhang; Yongjie Zhang; Ilia Britvich; Wojtek Hajdas; Radoslaw Marcinkowski; D. Rybka
POLAR is a joint European-Chinese experiment aimed at a precise measurement of hard X-ray polarization (50-500 keV) of the prompt emission of Gamma-Ray Bursts. The main aim is a better understanding of the geometry of astrophysical sources and of the X-ray emission mechanisms. POLAR is a compact Compton polarimeter characterized by a large modulation factor, effective area, and field of view. It consists of 1600 low-Z plastic scintillator bars read out by 25 at-panel multi-anode photomultipliers. The incoming X-rays undergo Compton scattering in the bars and produce a modulation pattern; experiments with polarized synchrotron radiation and GEANT4 Monte Carlo simulations have shown that the polarization degree and angle can be retrieved from this pattern with the accuracy necessary for identifying the GRB mechanism. The flight model of POLAR is currently under construction in Geneva. The POLAR instrument will be placed onboard the Chinese spacelab TG-2, scheduled for launch in low Earth orbit in 2015. The main milestones of the space qualification campaign will be described in the paper.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2017
Merlin Kole; Zuhao Li; N. Produit; T. Tymieniecka; J. Zhang; A. Zwolinska; Tianwei Bao; T. Bernasconi; F. Cadoux; Minzi Feng; N. Gauvin; Wojtek Hajdas; Siwei Kong; Huaishen Li; Li Li; X. Liu; R. Marcinkowski; S. Orsi; M. Pohl; D. Rybka; Jianchao Sun; Longlong Song; Jacek Szabelski; Ruijie Wang; Yanshan Wang; X. Wen; Bobing Wu; X. Wu; Hualin Xiao; Shaolin Xiong
Abstract POLAR is a new satellite-born detector aiming to measure the polarization of an unprecedented number of Gamma-Ray Bursts in the 50–500 keV energy range. The instrument, launched on-board the Tiangong-2 Chinese Space lab on the 15th of September 2016, is designed to measure the polarization of the hard X-ray flux by measuring the distribution of the azimuthal scattering angles of the incoming photons. A detailed understanding of the polarimeter and specifically of the systematic effects induced by the instrument’s non-uniformity are required for this purpose. In order to study the instrument’s response to polarization, POLAR underwent a beam test at the European Synchrotron Radiation Facility in France. In this paper both the beam test and the instrument performance will be described. This is followed by an overview of the Monte Carlo simulation tools developed for the instrument. Finally a comparison of the measured and simulated instrument performance will be provided and the instrument response to polarization will be presented.