S. P. Greiner
Virginia Tech
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. P. Greiner.
Journal of Animal Science | 2003
S. P. Greiner; Gene H. Rouse; D. E. Wilson; Larry V. Cundiff; T. L. Wheeler
Five hundred thirty-four steers were evaluated over a 2-yr period to determine the accuracy of ultrasonic estimates of carcass 12th-rib fat thickness (CFAT) and longissimus muscle area (CLMA). Within 5 d before slaughter, steers were ultrasonically measured for 12th-rib fat thickness (UFAT) and longissimus muscle area (ULMA) using an Aloka 500V real-time ultrasound machine equipped with a 17.2-cm, 3.5-MHz linear transducer. Overall, correlation coefficients between ultrasound and carcass fat and longissimus muscle area were 0.89 and 0.86, respectively. Correlations for UFAT with CFAT were similar between years (0.86 and 0.90), whereas the relationship between ULMA and CLMA was stronger in yr 1 (r = 0.91; n = 282) than in yr 2 (r = 0.79; n = 252). Differences between ultrasonic and carcass measurements were expressed on both an actual (FDIFF and RDIFF) and absolute (FDEV and RDEV) basis. Mean FDIFF and RDIFF indicated that ultrasound underestimated CFAT by 0.06 cm and overestimated CLMA by 0.71 cm2 across both years. Overall mean FDEV and RDEV, which are indications of the average error rate, were 0.16 cm and 3.39 cm2, respectively. Analysis of year effects revealed that FDIFF, FDEV, and RDEV were greater (P < 0.01) in magnitude in yr 1. Further analysis of FDEV indicated that leaner (CFAT < 0.51 cm) cattle were overestimated and that fatter (CFAT > 1.02 cm) cattle were underestimated with ultrasound. Similarly, steers with small CLMA (< 71.0 cm2) were overestimated, and steers with large CLMA (> 90.3 cm2) were underestimated. The thickness of CFAT had an effect (P < 0.05) on the error of UFAT and ULMA measurements, with leaner animals being more accurately evaluated for both traits. Standard errors of prediction (SEP) adjusted for bias of ultrasound measurements were 0.20 cm and 4.49 cm2 for UFAT and ULMA, respectively. Differences in SEP were observed for ULMA, but not UFAT, by year. These results indicate that ultrasound can be an accurate estimator of carcass traits in live cattle when measurements are taken by an experienced, well-trained technician, with only small differences in accuracy between years.
Journal of Animal Science | 2014
J. M. Scheffler; M. A. McCann; S. P. Greiner; Honglin Jiang; M.D. Hanigan; G. A. Bridges; S. L. Lake; D. E. Gerrard
Early weaning of calves to a high concentrate diet results in greater fat deposition and suggests early postnatal metabolic imprinting events may be exploited as a management tool to improve cattle value. Our objective was to implement a short, high energy dietary intervention before a typical grazing period to manipulate intramuscular fat deposition in finishing cattle. Fall-born, Angus-sired steer calves (n = 24) were stratified by sire and randomly assigned to normal weaned (NW) or metabolic-imprinted (MIP) treatments. At 105 ± 6d (135kg), MIP calves were transitioned to a diet containing 20% CP and 1.26 Mcal/kg NEg. Metabolic-imprinted calves were fed ad libitum as a group. Normal weaned calves remained on their dam until 253 ± 6 d of age. At this time, treatment groups were combined and grazed for 156 d on a mixed summer pasture. Following the grazing phase, steers were adapted to a corn silage-based feedlot diet and performance was monitored on 28-d intervals. Calves were staged for harvest based on backfat endpoint (target 1.0 to 1.2 cm). Metabolic-imprinted calves were heavier (P < 0.05) than NW calves (341 vs. 265 ± 4.2 kg) at normal weaning age. During the grazing phase, NW steers gained more weight than (P < 0.05) MIP steers (0.69 vs. 0.35 ± 0.03 kg/d). Feedlot performance and USDA yield grade were similar (P > 0.20) between treatments. However, MIP steers produced heavier (P < 0.05) carcasses (564 vs. 524 ± 5.6 kg) with higher (P < 0.001) marbling scores (645 vs. 517 ± 23). Therefore, calves consuming a high concentrate diet for 148 d after early weaning produced higher quality carcasses. This suggests early weaning and feeding a high concentrate before grazing is a viable strategy to increase marbling deposition compared with a traditional production system.
Journal of Animal Science | 2010
J. C. Emenheiser; S. P. Greiner; R. M. Lewis; D. R. Notter
Four equations were used to compare alternative procedures to adjust ultrasonic estimates (y) of backfat thickness (BF) and LM area (LMA) for BW using data from a series of 7 scans on 24 Suffolk ram lambs born in 2007. Equations were linear, linear + quadratic, allometric (y = alphaBW(beta)), and allometric + BW (ABW; y = alphaBW(beta)e(gammaW)). Goodness of fit was very similar between equations over the range of the data. Resulting adjustment equations were tested using 3 serial scans on winter-born Suffolk (n = 150), Hampshire (n = 36), and Dorset (n = 43) rams and 52 fall-born Dorset rams tested at the Virginia Ram Test in 1999 through 2002. Partial correlations (accounting for the effect of year) between predicted and actual measures ranged from 0.78 to 0.87 for BF and 0.66 to 0.93 for LMA in winter-born rams and from 0.70 to 0.71 for BF and 0.72 to 0.78 for LMA in fall-born rams. No significant differences in predictive ability existed between equations for BF or LMA (P > 0.05), and there was no indication that the allometric equation was a better predictor than linear within the range of the data. Adjustment equations were also tested using serial scan data from 37 Suffolk ewe lambs born in the same contemporary group as the rams used to derive the prediction equations but fed for a substantially slower rate of BW gain. Correlations between predicted and actual values of BF and LMA indicated lambs were too young and small at the first scan (77 d, 32.4 kg) to reliably predict carcass measures at typical slaughter weights. For prediction using data from the 2 subsequent scans, at mean ages >96 d and mean BW >39 kg, correlations between predicted and actual values were 0.72 to 0.74 for BF and 0.54 to 0.76 for LMA. Little difference existed between equations for predicting BF. For LMA, the ABW form was a weaker predictor than the others, and the linear equation was slightly superior to allometric. Therefore, it appears the linear and allometric forms are both suitable for use in central ram test and performance-tested farm flocks.
Journal of Animal Science | 2004
H. B. Vanimisetti; S. P. Greiner; A. M. Zajac; D. R. Notter
Journal of Animal Science | 2003
S. P. Greiner; Gene H. Rouse; D. E. Wilson; Larry V. Cundiff; T. L. Wheeler
Journal of Animal Science | 2016
Scott A. Bowdridge; C. S. Sotomaior; M. A. McCann; Anne M. Zajac; S. P. Greiner
Journal of Animal Science | 2015
W. A. D. Nayananjalie; K. L. Pike; T. R. Wiles; M. A. McCann; J. M. Scheffler; S. P. Greiner; H. H. Schramm; D. E. Gerrard; Honglin Jiang; M.D. Hanigan
Journal of Animal Science | 2017
D. O'Brien; S. Wildeus; D. L. Wright; A. R. Weaver; S. P. Greiner
Journal of Animal Science | 2017
A. R. Weaver; J. Saville; S. P. Greiner
Journal of Animal Science | 2016
A. R. Weaver; D. L. Wright; M. A. McCann; Anne M. Zajac; Scott A. Bowdridge; S. P. Greiner