Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Padin is active.

Publication


Featured researches published by S. Padin.


The Astrophysical Journal | 2011

A measurement of the damping tail of the cosmic microwave background power spectrum with the South Pole Telescope

R. Keisler; C. L. Reichardt; K. A. Aird; B. A. Benson; L. E. Bleem; J. E. Carlstrom; C. L. Chang; H. M. Cho; T. M. Crawford; A. T. Crites; T. de Haan; M. Dobbs; J. P. Dudley; E. M. George; N. W. Halverson; G. P. Holder; W. L. Holzapfel; S. Hoover; Z. Hou; J. D. Hrubes; M. Joy; L. Knox; A. T. Lee; E. M. Leitch; M. Lueker; D. Luong-Van; J. J. McMahon; J. Mehl; S. S. Meyer; M. Millea

We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) using data from the South Pole Telescope (SPT). The data consist of 790 square degrees of sky observed at 150 GHz during 2008 and 2009. Here we present the power spectrum over the multipole range 650 < ‘ < 3000, where it is dominated by primary CMB anisotropy. We combine this power spectrum with the power spectra from the seven-year Wilkinson Microwave Anisotropy Probe (WMAP) data release to constrain cosmological models. We nd that the SPT and WMAP data are consistent with each other and, when combined, are well t by a spatially at, CDM cosmological model. The SPT+WMAP constraint on the spectral index of scalar uctuations is ns = 0:9663 0:0112. We detect, at 5 signicance, the eect of gravitational lensing on the CMB power spectrum, and nd its amplitude to be consistent with the CDM cosmological model. We explore a number of extensions beyond the CDM model. Each extension is tested independently, although there are degeneracies between some of the extension parameters. We constrain the tensorto-scalar ratio to be r < 0:21 (95% CL) and constrain the running of the scalar spectral index to be dns=d lnk = 0:024 0:013. We strongly detect the eects of primordial helium and neutrinos on the CMB; a model without helium is rejected at 7.7 , while a model without neutrinos is rejected at 7.5 . The primordial helium abundance is measured to be Yp = 0:296 0:030, and the eective number of relativistic species is measured to be Ne = 3:85 0:62. The constraints on these models are strengthened when the CMB data are combined with measurements of the Hubble constant and the baryon acoustic oscillation feature. Notable improvements include ns = 0:9668 0:0093, r < 0:17 (95% CL), and Ne = 3:86 0:42. The SPT+WMAP data show a mild preference for low power in the CMB damping tail, and while this preference may be accommodated by models that have a negative spectral running, a high primordial helium abundance, or a high eective number of relativistic species, such models are disfavored by the abundance of low-redshift galaxy clusters. Subject headings: cosmology { cosmology:cosmic microwave background { cosmology: observations { large-scale structure of universe


Publications of the Astronomical Society of the Pacific | 2011

The 10 Meter South Pole Telescope

J. E. Carlstrom; Peter A. R. Ade; K. A. Aird; B. A. Benson; L. E. Bleem; S. Busetti; C. L. Chang; E. Chauvin; H. M. Cho; T. M. Crawford; A. T. Crites; M. Dobbs; N. W. Halverson; S. Heimsath; W. L. Holzapfel; J. D. Hrubes; M. Joy; R. Keisler; T. M. Lanting; Adrian T. Lee; E. M. Leitch; J. Leong; Wenyang Lu; M. Lueker; D. Luong-Van; Jeff McMahon; J. Mehl; S. S. Meyer; J. J. Mohr; T. E. Montroy

ABSTRACT.The South Pole Telescope (SPT) is a 10xa0m diameter, wide-field, offset Gregorian telescope with a 966xa0pixel, multicolor, millimeter-wave, bolometer camera. It is located at the Amundsen-Scott South Pole station in Antarctica. The design of the SPT emphasizes careful control of spillover and scattering, to minimize noise and false signals due to ground pickup. The key initial project is a large-area survey at wavelengths of 3, 2, and 1.3xa0mm, to detect clusters of galaxies via the Sunyaev-Zel’dovich effect and to measure the small-scale angular power spectrum of the cosmic microwave background (CMB). The data will be used to characterize the primordial matter power spectrum and to place constraints on the equation of state of dark energy. A second-generation camera will measure the polarization of the CMB, potentially leading to constraints on the neutrino mass and the energy scale of inflation.


The Astrophysical Journal | 2010

Galaxy clusters selected with the Sunyaev-Zel'dovich effect from 2008 south pole telescope observations

K. Vanderlinde; T. M. Crawford; T. de Haan; J. P. Dudley; L. Shaw; Peter A. R. Ade; K. A. Aird; B. A. Benson; L. E. Bleem; Mark Brodwin; J. E. Carlstrom; C. L. Chang; A. T. Crites; S. Desai; M. Dobbs; Ryan J. Foley; E. M. George; Michael D. Gladders; N. R. Hall; N. W. Halverson; F. W. High; G. P. Holder; W. L. Holzapfel; J. D. Hrubes; M. Joy; R. Keisler; L. Knox; A. T. Lee; E. M. Leitch; A. Loehr

We present a detection-significance-limited catalog of 21 Sunyaev-Zeldovich-selected galaxy clusters. These clusters, along with one unconfirmed candidate, were identified in 178 deg2 of sky surveyed in 2008 by the South Pole Telescope (SPT) to a depth of 18 μK arcmin at 150 GHz. Optical imaging from the Blanco Cosmology Survey (BCS) and Magellan telescopes provided photometric (and in some cases spectroscopic) redshift estimates, with catalog redshifts ranging from z = 0.15 to z>1, with a median z = 0.74. Of the 21 confirmed galaxy clusters, 3 were previously identified as Abell clusters, 3 were presented as SPT discoveries in Staniszewski etxa0al., and 3 were first identified in a recent analysis of BCS data by Menanteau etxa0al.; the remaining 12 clusters are presented for the first time in this work. Simulated observations of the SPT fields predict the sample to be nearly 100% complete above a mass threshold of M 200 5 × 1014 M ☉ h –1 at z = 0.6. This completeness threshold pushes to lower mass with increasing redshift, dropping to ~4 × 1014 M ☉ h –1 at z = 1. The size and redshift distribution of this catalog are in good agreement with expectations based on our current understanding of galaxy clusters and cosmology. In combination with other cosmological probes, we use this cluster catalog to improve estimates of cosmological parameters. Assuming a standard spatially flat wCDM cosmological model, the addition of our catalog to the WMAP seven-year results yields σ8 = 0.81 ± 0.09 and w = –1.07 ± 0.29, a ~50% improvement in precision on both parameters over WMAP7 alone.


The Astrophysical Journal | 2013

A measurement of the cosmic microwave background damping tail from the 2500-square-degree SPT-SZ survey

K. Story; C. L. Reichardt; Z. Hou; R. Keisler; K. A. Aird; B. A. Benson; L. E. Bleem; J. E. Carlstrom; C. L. Chang; H. M. Cho; T. M. Crawford; A. T. Crites; T. de Haan; M. Dobbs; J. P. Dudley; B. Follin; E. M. George; N. W. Halverson; G. P. Holder; W. L. Holzapfel; S. Hoover; J. D. Hrubes; M. Joy; L. Knox; A. T. Lee; Erik M. Leitch; M. Lueker; D. Luong-Van; Jeff McMahon; J. Mehl

We present a measurement of the cosmic microwave background (CMB) temperature power spectrum using data from the recently completed South Pole Telescope Sunyaev-Zeldovich (SPT-SZ) survey. This measurement is made from observations of 2540 deg^2 of sky with arcminute resolution at 150 GHz, and improves upon previous measurements using the SPT by tripling the sky area. We report CMB temperature anisotropy power over the multipole range 650 < l < 3000. We fit the SPT bandpowers, combined with the 7 yr Wilkinson Microwave Anisotropy Probe (WMAP7) data, with a six-parameter ΛCDM cosmological model and find that the two datasets are consistent and well fit by the model. Adding SPT measurements significantly improves ΛCDM parameter constraints; in particular, the constraint on θ_s tightens by a factor of 2.7. The impact of gravitational lensing is detected at 8.1σ, the most significant detection to date. This sensitivity of the SPT+WMAP7 data to lensing by large-scale structure at low redshifts allows us to constrain the mean curvature of the observable universe with CMB data alone to be Ω_k=-0.003^(+0.014)_(-0.018). Using the SPT+WMAP7 data, we measure the spectral index of scalar fluctuations to be n_s = 0.9623 ± 0.0097 in the ΛCDM model, a 3.9σ preference for a scale-dependent spectrum with n_s < 1. The SPT measurement of the CMB damping tail helps break the degeneracy that exists between the tensor-to-scalar ratio r and n_s in large-scale CMB measurements, leading to an upper limit of r < 0.18 (95% C.L.) in the ΛCDM+r model. Adding low-redshift measurements of the Hubble constant (H_0) and the baryon acoustic oscillation (BAO) feature to the SPT+WMAP7 data leads to further improvements. The combination of SPT+WMAP7+H_0+BAO constrains n_s = 0.9538 ± 0.0081 in the ΛCDM model, a 5.7σ detection of n_s < 1, and places an upper limit of r < 0.11 (95% C.L.) in the ΛCDM+r model. These new constraints on n_s and r have significant implications for our understanding of inflation, which we discuss in the context of selected single-field inflation models.


The Astrophysical Journal | 2012

A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES WITH TWO YEARS OF SOUTH POLE TELESCOPE OBSERVATIONS

C. L. Reichardt; L. Shaw; Oliver Zahn; K. A. Aird; B. A. Benson; L. E. Bleem; J. E. Carlstrom; C. L. Chang; H. M. Cho; T. M. Crawford; A. T. Crites; T. de Haan; M. Dobbs; J. P. Dudley; E. M. George; N. W. Halverson; G. P. Holder; W. L. Holzapfel; S. Hoover; Z. Hou; J. D. Hrubes; M. Joy; R. Keisler; L. Knox; A. T. Lee; E. M. Leitch; M. Lueker; D. Luong-Van; J. J. McMahon; J. Mehl

We present the first three-frequency South Pole Telescope (SPT) cosmic microwave background (CMB) power spectra. The band powers presented here cover angular scales 2000 < l < 9400 in frequency bands centered at 95, 150, and 220 GHz. At these frequencies and angular scales, a combination of the primary CMB anisotropy, thermal and kinetic Sunyaev-Zeldovich (SZ) effects, radio galaxies, and cosmic infrared background (CIB) contributes to the signal. We combine Planck/HFI and SPT data at 220 GHz to constrain the amplitude and shape of the CIB power spectrum and find strong evidence for nonlinear clustering. We explore the SZ results using a variety of cosmological models for the CMB and CIB anisotropies and find them to be robust with one exception: allowing for spatial correlations between the thermal SZ effect and CIB significantly degrades the SZ constraints. Neglecting this potential correlation, we find the thermal SZ power at 150 GHz and l = 3000 to be 3.65 ± 0.69 μK^2, and set an upper limit on the kinetic SZ power to be less than 2.8 μK^2 at 95% confidence. When a correlation between the thermal SZ and CIB is allowed, we constrain a linear combination of thermal and kinetic SZ power: D^(tSZ)_(3000) + 0.5D^(kSZ)_(3000) = 4.60 ± 0.63 μK^2, consistent with earlier measurements. We use the measured thermal SZ power and an analytic, thermal SZ model calibrated with simulations to determine σ_8 = 0.807 ± 0.016. Modeling uncertainties involving the astrophysics of the intracluster medium rather than the statistical uncertainty in the measured band powers are the dominant source of uncertainty on σ_8. We also place an upper limit on the kinetic SZ power produced by patchy reionization; a companion paper uses these limits to constrain the reionization history of the universe.


The Astrophysical Journal | 2010

Extragalactic millimeter-wave sources in South Pole Telescope survey data: Source counts, catalog, and statistics for an 87 square-degree field

J. D. Vieira; T. M. Crawford; Eric R. Switzer; Peter A. R. Ade; K. A. Aird; M. L. N. Ashby; B. A. Benson; L. E. Bleem; Mark Brodwin; J. E. Carlstrom; C. L. Chang; H. M. Cho; A. T. Crites; T. de Haan; M. Dobbs; W. Everett; E. M. George; Michael D. Gladders; N. R. Hall; N. W. Halverson; F. W. High; G. P. Holder; W. L. Holzapfel; J. D. Hrubes; M. Joy; R. Keisler; L. Knox; A. T. Lee; E. M. Leitch; M. Lueker

We report the results of an 87 deg{sup 2} point-source survey centered at R.A. 5{sup h}30{sup m}, decl. -55{sup 0} taken with the South Pole Telescope at 1.4 and 2.0 mm wavelengths with arcminute resolution and milli-Jansky depth. Based on the ratio of flux in the two bands, we separate the detected sources into two populations, one consistent with synchrotron emission from active galactic nuclei and the other consistent with thermal emission from dust. We present source counts for each population from 11 to 640 mJy at 1.4 mm and from 4.4 to 800 mJy at 2.0 mm. The 2.0 mm counts are dominated by synchrotron-dominated sources across our reported flux range; the 1.4 mm counts are dominated by synchrotron-dominated sources above {approx}15 mJy and by dust-dominated sources below that flux level. We detect 141 synchrotron-dominated sources and 47 dust-dominated sources at signal-to-noise ratio S/N >4.5 in at least one band. All of the most significantly detected members of the synchrotron-dominated population are associated with sources in previously published radio catalogs. Some of the dust-dominated sources are associated with nearby (z << 1) galaxies whose dust emission is also detected by the Infrared Astronomy Satellite. However, most of the bright,morexa0» dust-dominated sources have no counterparts in any existing catalogs. We argue that these sources represent the rarest and brightest members of the population commonly referred to as submillimeter galaxies (SMGs). Because these sources are selected at longer wavelengths than in typical SMG surveys, they are expected to have a higher mean redshift distribution and may provide a new window on galaxy formation in the early universe.«xa0less


Proceedings of SPIE | 2004

The South Pole Telescope

J. E. Ruhl; Peter A. R. Ade; J. E. Carlstrom; Hsiao-Mei Cho; T. M. Crawford; M. Dobbs; Christopher Greer; N. W. Halverson; W. L. Holzapfel; T. M. Lanting; Adrian T. Lee; Erik M. Leitch; J. Leong; Wenyang Lu; M. Lueker; J. Mehl; S. S. Meyer; J. J. Mohr; S. Padin; T. Plagge; C. Pryke; M. C. Runyan; Dan Schwan; Matthew Sharp; H. Spieler; Z. Staniszewski; A. A. Stark

A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10 meter diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over &dbigwig;4000 degrees for galaxy clusters using the Sunyaev-Zeldovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.


The Astrophysical Journal | 2013

COSMOLOGICAL CONSTRAINTS FROM SUNYAEV-ZEL'DOVICH-SELECTED CLUSTERS WITH X-RAY OBSERVATIONS IN THE FIRST 178 deg2 OF THE SOUTH POLE TELESCOPE SURVEY

B. A. Benson; T. de Haan; J. P. Dudley; C. L. Reichardt; K. A. Aird; K. Andersson; R. Armstrong; M. L. N. Ashby; Marshall W. Bautz; Matthew B. Bayliss; G. Bazin; L. E. Bleem; M. Brodwin; J. E. Carlstrom; C. L. Chang; H. M. Cho; Alejandro Clocchiatti; T. M. Crawford; A. T. Crites; S. Desai; M. Dobbs; Ryan J. Foley; W. Forman; E. M. George; Michael D. Gladders; Anthony H. Gonzalez; N. W. Halverson; N. L. Harrington; F. W. High; G. P. Holder

We use measurements from the South Pole Telescope (SPT) Sunyaev-Zeldovich (SZ) cluster survey in combination with X-ray measurements to constrain cosmological parameters. We present a statistical method that fits for the scaling relations of the SZ and X-ray cluster observables with mass while jointly fitting for cosmology. The method is generalizable to multiple cluster observables, and self-consistently accounts for the effects of the cluster selection and uncertainties in cluster mass calibration on the derived cosmological constraints. We apply this method to a data set consisting of an SZ-selected catalog of 18 galaxy clusters at z > 0.3 from the first 178 deg^2 of the 2500 deg^2 SPT-SZ survey, with 14 clusters having X-ray observations from either Chandra or XMM-Newton. Assuming a spatially flat ΛCDM cosmological model, we find the SPT cluster sample constrains σ_8(Ω_m /0.25)^(0.30) = 0.785 ± 0.037. In combination with measurements of the cosmic microwave background (CMB) power spectrum from the SPT and the seven-year Wilkinson Microwave Anisotropy Probe data, the SPT cluster sample constrains σ_8 = 0.795 ± 0.016 and Ω_m = 0.255 ± 0.016, a factor of 1.5 improvement on each parameter over the CMB data alone. We consider several extensions beyond the ΛCDM model by including the following as free parameters: the dark energy equation of state (w), the sum of the neutrino masses (Σm ν), the effective number of relativistic species (N_(eff)), and a primordial non-Gaussianity (f_(NL)). We find that adding the SPT cluster data significantly improves the constraints on w and Σm_ν beyond those found when using measurements of the CMB, supernovae, baryon acoustic oscillations, and the Hubble constant. Considering each extension independently, we best constrain w = –0.973 ± 0.063 and the sum of neutrino masses Σm_ν < 0.28 eV at 95% confidence, a factor of 1.25 and 1.4 improvement, respectively, over the constraints without clusters. Assuming a ΛCDM model with a free N_(eff) and Σm_ν, we measure N_(eff) = 3.91 ± 0.42 and constrain Σm_ν < 0.63 eV at 95% confidence. We also use the SPT cluster sample to constrain f_(NL) = –220 ± 317, consistent with zero primordial non-Gaussianity. Finally, we discuss the current systematic limitations due to the cluster mass calibration, and future improvements for the recently completed 2500 deg^2 SPT-SZ survey. The survey has detected ~500 clusters with a median redshift of ~0.5 and a median mass of ~2.3 × 10^(14) M_☉ h^(–1) and, when combined with an improved cluster mass calibration and existing external cosmological data sets will significantly improve constraints on w.


The Astrophysical Journal | 2014

Constraints on cosmology from the cosmic microwave background power spectrum of the 2500 deg2 SPT-SZ survey

Z. Hou; C. L. Reichardt; K. Story; B. Follin; R. Keisler; K. A. Aird; B. A. Benson; L. E. Bleem; J. E. Carlstrom; C. L. Chang; H. M. Cho; T. M. Crawford; A. T. Crites; T. de Haan; R. de Putter; M. Dobbs; Scott Dodelson; J. P. Dudley; E. M. George; N. W. Halverson; G. P. Holder; W. L. Holzapfel; S. Hoover; J. D. Hrubes; M. Joy; L. Knox; A. T. Lee; E. M. Leitch; M. Lueker; D. Luong-Van

We explore extensions to the ΛCDM cosmology using measurements of the cosmic microwave background (CMB) from the recent SPT-SZ survey, along with data from WMAP7 and measurements of H_0 and baryon acoustic oscillation (BAO). We check for consistency within ΛCDM between these data sets, and find some tension. The CMB alone gives weak support to physics beyond ΛCDM, due to a slight trend relative to ΛCDM of decreasing power toward smaller angular scales. While it may be due to statistical fluctuation, this trend could also be explained by several extensions. We consider running of the primordial spectral index (dn_s /d ln k), as well as two extensions that modify the damping tail power (the primordial helium abundance Y_p and the effective number of neutrino species N_(eff)) and one that modifies the large-scale power due to the integrated Sachs-Wolfe effect (the sum of neutrino masses ∑m_ν). These extensions have similar observational consequences and are partially degenerate when considered simultaneously. Of the six one-parameter extensions considered, we find CMB to have the largest preference for dn_s/d ln k with –0.046 0 from CMB+BAO+H_0 + SPT_(CL). The median value is (0.32 ± 0.11) eV, a factor of six above the lower bound set by neutrino oscillation observations. All data sets except H_0 show some preference for massive neutrinos; data combinations including H_0 favor nonzero masses only if BAO data are also included. We also constrain the two-parameter extensions N_(eff) + ∑m_ν and N_(eff) + Y_p to explore constraints on additional light species and big bang nucleosynthesis, respectively.


The Astrophysical Journal | 2009

Galaxy clusters discovered with a sunyaev-zel'dovich effect survey

Z. Staniszewski; Peter A. R. Ade; K. A. Aird; B. A. Benson; L. E. Bleem; J. E. Carlstrom; C. L. Chang; H. M. Cho; T. M. Crawford; A. T. Crites; T. de Haan; M. Dobbs; N. W. Halverson; G. P. Holder; W. L. Holzapfel; J. D. Hrubes; M. Joy; R. Keisler; T. M. Lanting; A. T. Lee; E. M. Leitch; A. Loehr; M. Lueker; Jeff McMahon; J. Mehl; S. S. Meyer; J. J. Mohr; T. E. Montroy; Choong Ngeow; S. Padin

The South Pole Telescope (SPT) is conducting a Sunyaev-Zeldovich (SZ) effect survey over large areas of the southern sky, searching for massive galaxy clusters to high redshift. In this preliminary study, we focus on a 40 deg2 area targeted by the Blanco Cosmology Survey (BCS), which is centered roughly at right ascension 5h30m, declination –53° (J2000). Over two seasons of observations, this entire region has been mapped by the SPT at 95xa0GHz, 150xa0GHz, and 225xa0GHz. We report the four most significant SPT detections of SZ clusters in this field, three of which were previously unknown and, therefore, represent the first galaxy clusters discovered with an SZ survey. The SZ clusters are detected as decrements with greater than 5σ significance in the high-sensitivity 150xa0GHz SPT map. The SZ spectrum of these sources is confirmed by detections of decrements at the corresponding locations in the 95xa0GHz SPT map and nondetections at those locations in the 225xa0GHz SPT map. Multiband optical images from the BCS survey demonstrate significant concentrations of similarly colored galaxies at the positions of the SZ detections. Photometric redshift estimates from the BCS data indicate that two of the clusters lie at moderate redshift (z ~ 0.4) and two at high redshift (z 0.8). One of the SZ detections was previously identified as a galaxy cluster in the optical as part of the Abell supplementary southern cluster catalog and in the X-ray using data from the ROSAT All-Sky Survey (RASS). Potential RASS counterparts (not previously identified as clusters) are also found for two of the new discoveries. These first four galaxy clusters are the most significant SZ detections from a subset of the ongoing SPT survey. As such, they serve as a demonstration that SZ surveys, and the SPT in particular, can be an effective means for finding galaxy clusters.

Collaboration


Dive into the S. Padin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. W. Halverson

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. de Haan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. T. Crites

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

E. M. George

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge