Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Peneva is active.

Publication


Featured researches published by S. Peneva.


Monthly Notices of the Royal Astronomical Society | 2012

Multiwavelength intraday variability of the BL Lacertae S5 0716+714

Alok C. Gupta; T. P. Krichbaum; Paul J. Wiita; Bindu Rani; Kirill V. Sokolovsky; P. Mohan; A. Mangalam; N. Marchili; L. Fuhrmann; I. Agudo; U. Bach; M. Böttcher; K. E. Gabanyi; Haritma Gaur; K. Hawkins; G. N. Kimeridze; Omar M. Kurtanidze; S. O. Kurtanidze; C.-U. Lee; Xiao-Lan Liu; B. McBreen; R. Nesci; G. Nestoras; M. G. Nikolashvili; J. Ohlert; N. Palma; S. Peneva; T. Pursimo; E. Semkov; A. Strigachev

We report results from a one-week multiwavelength campaign to monitor the BL Lacertae object (BL Lac) S5 0716+714 (on 2009 December 9–16). Nine ground-based telescopes at widely separated longitudes and one space-based telescope aboard the Swift satellite collected optical data. Radio data were obtained from the Effelsberg and Urumqi observatories and X-ray data from Swift. In the radio bands, the source shows rapid [∼(0.5–1.5) d] intraday variability with peak amplitudes of up to ∼10 per cent. The variability at 2.8 cm leads by about 1 d the variability at 6 and 11 cm. This time lag and more rapid variations suggest an intrinsic contribution to the source’s intraday variability at 2.8 cm, while at 6 and 11 cm, interstellar scintillation (ISS) seems to predominate. Large and quasi-sinusoidal variations of ∼0.8 mag were detected in the V, R and I bands. The X-ray data (0.2–10 keV) do not reveal significant variability on a 4 d time-scale, favouring reprocessed inverse Compton over synchrotron radiation in this band. The characteristic variability time-scales in radio and optical


Monthly Notices of the Royal Astronomical Society | 2013

The awakening of BL Lacertae: observations by Fermi, Swift and the GASP-WEBT

C. M. Raiteri; M. Villata; F. D'Ammando; V. M. Larionov; M. A. Gurwell; D. O. Mirzaqulov; Paul S. Smith; J. A. Acosta-Pulido; I. Agudo; M. J. Arévalo; E. Benítez; A. Berdyugin; D. A. Blinov; G. A. Borman; M. Böttcher; V. Bozhilov; M. I. Carnerero; D. Carosati; C. Casadio; W. P. Chen; V. T. Doroshenko; Yu. S. Efimov; N. V. Efimova; Sh. A. Ehgamberdiev; J. L. Gómez; P. A. González-Morales; D. Hiriart; S. Ibryamov; Y. Jadhav; S. G. Jorstad

Since the launch of the Fermi satellite, BL Lacertae has been moderately active at ?-rays and optical frequencies until 2011 May, when the source started a series of strong flares. The exceptional optical sampling achieved by the GLAST–AGILE Support Program of the Whole Earth Blazar Telescope in collaboration with the Steward Observatory allows us to perform a detailed comparison with the daily ?-ray observations by Fermi. Discrete correlation analysis between the optical and ?-ray emission reveals correlation with a time lag of 0 ± 1 d, which suggests cospatiality of the corresponding jet emitting regions. A better definition of the time lag is hindered by the daily gaps in the sampling of the extremely fast flux variations. In general, optical flares present more structure and develop on longer time-scales than corresponding ?-ray flares. Observations at X-rays and at millimetre wavelengths reveal a common trend, which suggests that the region producing the mm and X-ray radiation is located downstream from the optical and ?-ray-emitting zone in the jet. The mean optical degree of polarization slightly decreases over the considered period and in general it is higher when the flux is lower. The optical electric vector polarization angle (EVPA) shows a preferred orientation of about 15°, nearly aligned with the radio core EVPA and mean jet direction. Oscillations around it increase during the 2011–2012 outburst. We investigate the effects of a geometrical interpretation of the long-term flux variability on the polarization. A helical magnetic field model predicts an evolution of the mean polarization that is in reasonable agreement with the observations. These can be fully explained by introducing slight variations in the compression factor in a transverse shock waves model.


Monthly Notices of the Royal Astronomical Society | 2012

Quasi-simultaneous two-band optical variability of the blazars 1ES 1959+650 and 1ES 2344+514

Haritma Gaur; Alok C. Gupta; A. Strigachev; E. Semkov; Paul J. Wiita; S. Peneva; S. Boeva; Nikolay Kacharov; B. Mihov; E. Ovcharov

We report the results of quasi-simultaneous two-filter optical monitoring of two high-energy peaked blazars, 1ES 1959+650 and 1ES 2344+514, to search for microvariability and short-term variability (STV). We carried out optical photometric monitoring of these sources in an alternating sequence of B and R passbands, and have 24 and 19 nights of new data for these two sources, respectively. No genuine microvariability (intranight variability) was detected in either of these sources. This non-detection of intranight variations is in agreement with the conclusions of previous studies that high-energy peaked BL Lacs are intrinsically less variable than low-energy peaked BL Lacs in the optical bands. We also report the results of STV studies for these two sources between 2009 July and 2010 August. Genuine STV is found for the source 1ES 1959+650 but not for 1ES 2344+514. We briefly discuss possible reasons for the difference between the intranight variability behaviour of high- and low-energy peaked blazars.


Monthly Notices of the Royal Astronomical Society | 2012

Optical flux and spectral variability of blazars

Haritma Gaur; Alok C. Gupta; A. Strigachev; E. Semkov; Paul J. Wiita; S. Peneva; S. Boeva; L. Slavcheva-Mihova; B. Mihov; G. Latev; U. S. Pandey

We report the results of optical monitoring for a sample of 11 blazars including 10 BL Lacertae objects (BL Lacs) and one flat spectrum radio quasar (FSRQ). We have measured the multiband optical flux and colour variations in these blazars on intraday and short-term time-scales of months and have limited data for two more blazars. These photometric observations were made during 2009–2011, using six optical telescopes, four in Bulgaria, one in Greece and one in India. On short-term time-scales we found significant flux variations in nine of the sources and colour variations in three of them. Intraday variability was detected on six nights for two sources out of the 18 nights and four sources for which we collected such data. These new optical observations of these blazars plus data from our previous published papers (for three more blazars) were used to analyse their spectral flux distributions in the optical frequency range. Our full sample for this purpose includes six high-synchrotron-frequency-peaked BL Lacs (HSPs), three intermediate-synchrotron-frequency-peaked BL Lacs (ISPs) and six low-synchrotron-frequency-peaked BL Lacs (LSPs; including both BL Lacs and FSRQs). We also investigated the spectral slope variability and found that the average spectral slopes of LSPs show a good accordance with the synchrotron self-Compton loss dominated model. Our analysis supports previous studies that found that the spectra of the HSPs and FSRQs have significant additional emission components. The spectra of all these HSPs and LSPs get flatter when they become brighter, while for FSRQs the opposite appears to hold. This supports the hypothesis that there is a significant thermal contribution to the optical spectrum for FSRQs.


Astronomy and Astrophysics | 2010

The large amplitude outburst of the young star HBC 722 in NGC 7000/IC 5070, a new FU Orionis candidate

E. Semkov; S. Peneva; Ulisse Munari; A. Milani; Paolo Valisa

Context. The investigations of the photometric and spectral variability of PMS stars are essential to a better understanding of the early phases of stellar evolution. We are carrying out a photometric monitoring program of some fields of active star formation. One of our targets is the dark cloud region between the bright nebulae NGC 7000 and IC 5070. Aims. We report the discovery of a large amplitude outburst from the young star HBC 722 (LkHα 188 G4) located in the region of NGC 7000/IC 5070. On the basis of photometric and spectroscopic observations, we argue that this outburst is of the FU Orionis type. Methods. We gathered photometric and spectroscopic observations of the object both in the pre-outburst state and during a phase of increase in its brightness. The photometric BVRI data (Johnson-Cousins system) that we present were collected from April 2009 to September 2010. To facilitate transformation from instrumental measurements to the standard system, fifteen comparison stars in the field of HBC 722 were calibrated in the BVRI bands. Optical spectra of HBC 722 were obtained with the 1.3-m telescope of Skinakas Observatory (Crete, Greece) and the 0.6-m telescope of Schiaparelli Observatory in Varese (Italy). Results. The pre-outburst photometric and spectroscopic observations of HBC 722 show both low amplitude photometric variations and an emission-line spectrum typical of T Tau stars. The observed outburst started before May 2010 and reached its maximum brightness in September 2010, with a recorded ΔV ∼ 4. m 7 amplitude. Simultaneously with the increase in brightness the color indices changed significantly and the star became appreciably bluer. The light curve of HBC 722 during the period of rise in brightness is similar to the light curves of the classical FUors ‐ FU Ori and V1057 Cyg. The spectral observations during the time of increase in brightness showed significant changes in both the profiles and intensity of the spectral lines. Only Hα remained in emission, while the Hβ, Na I 5890/5896, Mg I triplet 5174, and Ba II 5854/6497 lines were in strong absorption.


Monthly Notices of the Royal Astronomical Society | 2015

Multiband optical–NIR variability of blazars on diverse time-scales

A. Agarwal; Alok C. Gupta; A. Strigachev; E. Semkov; Paul J. Wiita; M. Böttcher; S. Boeva; Haritma Gaur; Minfeng Gu; S. Peneva; Sunay Ibryamov; U. S. Pandey

Tosearchforopticalvariabilityonawiderangeoftime-scales,wehavecarriedoutphotometric monitoring of two flat spectrum radio quasars, 3C 454.3 and 3C 279, plus one BL Lac, S5 0716+714, all of which have been exhibiting remarkably high activity and pronounced variability at all wavelengths. CCD magnitudes in B, V, R, and I passbands were determined for ∼7000 new optical observations from 114 nights made during 2011–2014, with an average length of ∼4 h each, at seven optical telescopes: four in Bulgaria, one in Greece, and two in India. We measured multiband optical flux and colour variations on diverse time-scales. Discrete correlation functions were computed among B, V, R, and I observations, to search for any time delays. We found weak correlations in some cases with no significant time lags. The structure function method was used to estimate any characteristic time-scales of variability. We also investigated the spectral energy distribution of the three blazars using B, V, R, I, J, and K passband data. We found that the sources almost always follow a bluer-when-brighter trend. We discuss possible physical causes of the observed spectral variability.


Monthly Notices of the Royal Astronomical Society | 2015

Nature of intranight optical variability of BL Lacertae

Haritma Gaur; Alok C. Gupta; A. Strigachev; E. Semkov; M. Böttcher; Paul J. Wiita; J. A. de Diego; Minfeng Gu; Hengxiao Guo; R. Joshi; B. Mihov; N. Palma; S. Peneva; A. Rajasingam; L. Slavcheva-Mihova

We present the results of extensive multiband intranight optical monitoring of BL Lacertae during 2010-2012. BL Lacertae was very active in this period and showed intense variability in almost all wavelengths. We extensively observed it for a total for 38 nights; on 26 of them, observations were done quasi-simultaneously in B, V, R and I bands (totalling 113 light curves), with an average sampling interval of around 8 min. BL Lacertae showed significant variations on hour-like time-scales in a total of 19 nights in different optical bands. We did not find any evidence for periodicities or characteristic variability time-scales in the light curves. The intranight variability amplitude is generally greater at higher frequencies and decreases as the source flux increases. We found spectral variations in BL Lacertae in the sense that the optical spectrum becomes flatter as the flux increases but in several flaring states, deviates from the linear trend suggesting different jet components contributing to the emission at different times.


Monthly Notices of the Royal Astronomical Society | 2016

Exceptional outburst of the blazar CTA 102 in 2012: The GASP-WEBT campaign and its extension.

V. M. Larionov; M. Villata; C. M. Raiteri; S. G. Jorstad; Alan P. Marscher; I. Agudo; Paul S. Smith; J. A. Acosta-Pulido; M. J. Arévalo; A. A. Arkharov; D. A. Blinov; G. Borisov; G. A. Borman; V. Bozhilov; A. Bueno; M. I. Carnerero; D. Carosati; C. Casadio; W. P. Chen; Dan P Clemens; A. Di Paola; Sh. A. Ehgamberdiev; J. L. Gómez; P. A. González-Morales; A. B. Grinon-Marin; T. S. Grishina; V. A. Hagen-Thorn; Sunay Ibryamov; R. Itoh; M. Joshi

Russian RFBR [15-02-00949]; St. Petersburg University [6.38.335.2015, 6.42.1113.2016]; NASA [NNX08AV65G, NNX10AO59G, NNX10AU15G, NNX11AO37G, NNX11AQ03G, NNX14AQ58G, NNX09AU10G, NNX12AO93G]; Spanish Ministry of Economy and Competitiveness (MINECO) [AYA2013-40825-P]; MINECO; NSF; BU; Lowell Observatory; Bulgarian Ministry of Education and Sciences [DO 02-137 (BIn-13/09)]; Uzbekistan Academy of Sciences [F2-FA-F027]


Publications of the Astronomical Society of Australia | 2015

Long-Term Multicolour Photometry of the Young Stellar Objects FHO 26, FHO 27, FHO 28, FHO 29, and V1929 Cygni

Sunay Ibryamov; E. Semkov; S. Peneva

Results from long-term multicolour optical photometric observations of the pre-main-sequence stars FHO 26, FHO 27, FHO 28, FHO 29, and V1929 Cyg collected during the period from 1997 June to 2014 December are presented. The objects are located in the dense molecular cloud L935, named ‘Gulf of Mexico’, in the field between the North America and Pelican nebulae. All stars from our study exhibit strong photometric variability in all optical passbands. Using our BVRI observations and data published by other authors, we tried to define the reasons for the observed brightness variations. The presented paper is a part of our long-term photometric study of the young stellar objects in the region of ‘Gulf of Mexico’.


Astronomy and Astrophysics | 2015

The pre-main-sequence star V1184 Tauri (CB 34V) at the end of prolonged eclipse

E. Semkov; S. Peneva; Sunay Ibryamov

V1184 Tau (CB 34V) lies in the field of the Bok globule CB 34 and was discovered as a large amplitude variable in 1993. According to the first hypothesis of the variability of the star, it is a FU Orionis candidate erupted between 1951 and 1993. During subsequent observations, the star manifests large amplitude variability interpreted as obscuration from circumstellar clouds of dust. We included V1184 Tau (CB 34V) in our target list of highly variable pre-main-sequence stars to determine the reasons for the variations in the brightness of this object. Data from BVRI photometric observations of the young stellar object V1184 Tau, obtained in the period 2008-2015, are presented in the paper. These data are a continuation of our optical photometric monitoring of the star began in 2000 and continuing to date. The photometric observations of V1184 Tau were performed in two observatories with two medium-sized and two small telescopes. Our results indicate that during periods of maximum light the star shows characteristics typical of T Tauri stars. During the observed deep minimum in brightness, however, V1184 Tau is rather similar to UX Orionis objects. The deep drop in brightness began in 2003 ended in 2015 as the star has returned to maximum light. The light curve during the drop is obviously asymmetric as the decrease in brightness lasts two times longer than the rise. The observed colour reverse on the colour-magnitude diagrams is also confirmation of obscuration from circumstellar clouds of dust as a reason for the large amplitude variability in the brightness.

Collaboration


Dive into the S. Peneva's collaboration.

Top Co-Authors

Avatar

E. Semkov

Bulgarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Sunay Ibryamov

Bulgarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

A. Strigachev

Bulgarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Alok C. Gupta

Aryabhatta Research Institute of Observational Sciences

View shared research outputs
Top Co-Authors

Avatar

Paul J. Wiita

The College of New Jersey

View shared research outputs
Top Co-Authors

Avatar

B. Mihov

Bulgarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

S. Boeva

Bulgarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Haritma Gaur

Aryabhatta Research Institute of Observational Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I. Agudo

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge