Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Pezzagna is active.

Publication


Featured researches published by S. Pezzagna.


Science | 2013

Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume.

Thomas Staudacher; Fumin Shi; S. Pezzagna; Jan Meijer; Jing Du; Carlos A. Meriles; Friedemann Reinhard; Joerg Wrachtrup

Nanoscale NMR with Diamond Defects Although nuclear magnetic resonance (NMR) methods can be used for spatial imaging, the low sensitivity of detectors limits the minimum sample size. Two reports now describe the use of near-surface nitrogen-vacancy (NV) defects in diamond for detecting nanotesla magnetic fields from very small volumes of material (see the Perspective by Hemmer). The spin of the defect can be detected by changes in its fluorescence, which allows proton NMR of organic samples only a few nanometers thick on the diamond surface. Mamin et al. (p. 557) used a combination of electron spin echoes and pulsed NMR manipulation of the proton spins to detect the very weak fields. Staudacher et al. (p. 561) measured statistical polarization of a population of about 104 spins near the NV center with a dynamical decoupling method. The optical response of the spin of a near-surface atomic defect in diamond can be used to sense proton magnetic fields. [Also see Perspective by Hemmer] Application of nuclear magnetic resonance (NMR) spectroscopy to nanoscale samples has remained an elusive goal, achieved only with great experimental effort at subkelvin temperatures. We demonstrated detection of NMR signals from a (5-nanometer)3 voxel of various fluid and solid organic samples under ambient conditions. We used an atomic-size magnetic field sensor, a single nitrogen-vacancy defect center, embedded ~7 nanometers under the surface of a bulk diamond to record NMR spectra of various samples placed on the diamond surface. Its detection volume consisted of only 104 nuclear spins with a net magnetization of only 102 statistically polarized spins.


Nature Physics | 2010

Quantum register based on coupled electron spins in a room-temperature solid.

Philipp Neumann; Roman Kolesov; Boris Naydenov; J. Beck; Florian Rempp; M. Steiner; V. Jacques; Gopalakrishnan Balasubramanian; Matthew Markham; Daniel Twitchen; S. Pezzagna; Jan Meijer; Jason Twamley; Fedor Jelezko; Jörg Wrachtrup

Nitrogen–vacancy centres in diamond have emerged as a promising platform for quantum information processing at room temperature. Now, coherent coupling between two electron spins separated by almost 10 nm has been demonstrated. At this distance, the spins can be addressed individually, which might enable the construction of a network of connected quantum registers.


Nature Physics | 2013

Room-temperature entanglement between single defect spins in diamond

Florian Dolde; Ingmar Jakobi; Boris Naydenov; Nan Zhao; S. Pezzagna; C. Trautmann; Jan Meijer; Philipp Neumann; Fedor Jelezko; Jörg Wrachtrup

Entanglement is the central yet fleeting phenomenon of quantum physics. Once being considered a peculiar counter-intuitive property of quantum theory1, it has developed into the most central element of quantum technology. Consequently, there have been a number of experimental demonstrations of entanglement between photons2, atoms3, ions4 and solid-state systems such as spins or quantum dots5, 6, 7, superconducting circuits8, 9 and macroscopic diamond10. Here we experimentally demonstrate entanglement between two engineered single solid-state spin quantum bits (qubits) at ambient conditions. Photon emission of defect pairs reveals ground-state spin correlation. Entanglement (fidelity = 0.67±0.04) is proved by quantum state tomography. Moreover, the lifetime of electron spin entanglement is extended to milliseconds by entanglement swapping to nuclear spins. The experiments mark an important step towards a scalable room-temperature quantum device being of potential use in quantum information processing as well as metrology.


Physical Review B | 2011

Chemical control of the charge state of nitrogen-vacancy centers in diamond

Moritz V. Hauf; Bernhard Grotz; Boris Naydenov; Markus Dankerl; S. Pezzagna; Jan Meijer; Fedor Jelezko; Jörg Wrachtrup; M. Stutzmann; Friedemann Reinhard; Jose A. Garrido

We investigate the effect of surface termination on the charge state of nitrogen vacancy centers, which have been ion-implanted few nanometers below the surface of diamond. We find that, when changing the surface termination from oxygen to hydrogen, previously stable NV- centers convert into NV0 and, subsequently, into an unknown non-fluorescent state. This effect is found to depend strongly on the implantation dose. Simulations of the electronic band structure confirm the dissappearance of NV- in the vicinity of the hydrogen-terminated surface. The band bending, which induces a p-type surface conductive layer leads to a depletion of electrons in the nitrogen vacancies close to the surface. Therefore, hydrogen surface termination provides a chemical way for the control of the charge state of nitrogen-vacancy centers in diamond. Furthermore, it opens the way to an electrostatic control of the charge state with the use of an external gate electrode.


New Journal of Physics | 2011

Creation and nature of optical centres in diamond for single-photon emission—overview and critical remarks

S. Pezzagna; Detlef Rogalla; Dominik Wildanger; Jan Meijer; Alexander Zaitsev

A huge variety of optical colour centres can be found in diamond, emitting in its whole wide transparency range. Although several of these centres have been demonstrated as single-photon emitters, none of them meets all of the requirements of an ideal single-photon source. In this view, we discuss the properties of prominent optical centres, such as the nitrogen vacancy, the silicon vacancy or the so-called NE8 centre, as well as recently found centres ascribed to defects containing Ni, Si, Cr and Xe. Besides suitable intrinsic properties, it is necessary for practical applications that optical centres can be created artificially on demand. Of all known methods, only ion implantation allows for the most controlled creation of such defect centres. In this paper, we discuss how nanoscalability, that is, the nanometre placement and the deterministic creation of optical centres, can, could or cannot be achieved by the available ion implantation techniques. A fine analysis of individual optical centres is now possible, thanks to the recently developed subdiffraction optical microscopy methods.


New Journal of Physics | 2010

Creation efficiency of nitrogen-vacancy centres in diamond

S. Pezzagna; Boris Naydenov; Fedor Jelezko; Jörg Wrachtrup; Jan Meijer

Nitrogen-vacancy (NV) colour centres in diamond are attracting growing attention due to potential applications in solid-state quantum information processing and magnetometry. Although proof-of-principle experiments have been demonstrated, further development requires the controllable production of defects with a high yield. In this paper, we experimentally show that the production efficiency of NV defects strongly depends on the ion implantation energy. This can be explained in terms of the number of vacancies produced per implanted ion and surface proximity. The dependence on ion fluence is also underlined, revealing a nonlinear regime and showing how the diamond lattice is damaged at higher fluences.


Nature Communications | 2012

Charge state manipulation of qubits in diamond

Bernhard Grotz; Moritz V. Hauf; Markus Dankerl; Boris Naydenov; S. Pezzagna; Jan Meijer; Fedor Jelezko; Joerg Wrachtrup; M. Stutzmann; Friedemann Reinhard; Jose A. Garrido

The nitrogen-vacancy (NV) centre in diamond is a promising candidate for a solid-state qubit. However, its charge state is known to be unstable, discharging from the qubit state NV− into the neutral state NV0 under various circumstances. Here we demonstrate that the charge state can be controlled by an electrolytic gate electrode. This way, single centres can be switched from an unknown non-fluorescent state into the neutral charge state NV0, and the population of an ensemble of centres can be shifted from NV0 to NV−. Numerical simulations confirm the manipulation of the charge state to be induced by the gate-controlled shift of the Fermi level at the diamond surface. This result opens the way to a dynamic control of transitions between charge states and to explore hitherto inaccessible states, such as NV+.


Nature Communications | 2014

Nuclear magnetic resonance spectroscopy with single spin sensitivity

Christoph Müller; Xi Kong; Jianming Cai; K. Melentijević; Alastair Stacey; Matthew Markham; Daniel Twitchen; Junichi Isoya; S. Pezzagna; Jan Meijer; Jiangfeng Du; Martin B. Plenio; Boris Naydenov; Liam P. McGuinness; Fedor Jelezko

Nuclear magnetic resonance spectroscopy and magnetic resonance imaging at the ultimate sensitivity limit of single molecules or single nuclear spins requires fundamentally new detection strategies. The strong coupling regime, when interaction between sensor and sample spins dominates all other interactions, is one such strategy. In this regime, classically forbidden detection of completely unpolarized nuclei is allowed, going beyond statistical fluctuations in magnetization. Here we realize strong coupling between an atomic (nitrogen–vacancy) sensor and sample nuclei to perform nuclear magnetic resonance on four 29Si spins. We exploit the field gradient created by the diamond atomic sensor, in concert with compressed sensing, to realize imaging protocols, enabling individual nuclei to be located with Angstrom precision. The achieved signal-to-noise ratio under ambient conditions allows single nuclear spin sensitivity to be achieved within seconds.


Nature Communications | 2014

High-fidelity spin entanglement using optimal control

Florian Dolde; Ville Bergholm; Ya Wang; Ingmar Jakobi; Boris Naydenov; S. Pezzagna; Jan Meijer; Fedor Jelezko; Philipp Neumann; Thomas Schulte-Herbrüggen; Jacob Biamonte; Jörg Wrachtrup

Precise control of quantum systems is of fundamental importance in quantum information processing, quantum metrology and high-resolution spectroscopy. When scaling up quantum registers, several challenges arise: individual addressing of qubits while suppressing cross-talk, entangling distant nodes and decoupling unwanted interactions. Here we experimentally demonstrate optimal control of a prototype spin qubit system consisting of two proximal nitrogen-vacancy centres in diamond. Using engineered microwave pulses, we demonstrate single electron spin operations with a fidelity F≈0.99. With additional dynamical decoupling techniques, we further realize high-quality, on-demand entangled states between two electron spins with F>0.82, mostly limited by the coherence time and imperfect initialization. Crosstalk in a crowded spectrum and unwanted dipolar couplings are simultaneously eliminated to a high extent. Finally, by high-fidelity entanglement swapping to nuclear spin quantum memory, we demonstrate nuclear spin entanglement over a length scale of 25 nm. This experiment underlines the importance of optimal control for scalable room temperature spin-based quantum information devices.


Applied Physics Letters | 2014

Nanoscale nuclear magnetic resonance with a 1.9-nm-deep nitrogen-vacancy sensor

M. Loretz; S. Pezzagna; Jan Meijer; C. L. Degen

We present nanoscale nuclear magnetic resonance (NMR) measurements performed with nitrogen-vacancy (NV) centers located down to about 2 nm from the diamond surface. NV centers were created by shallow ion implantation followed by a slow, nanometer-by-nanometer removal of diamond material using oxidative etching in air. The close proximity of NV centers to the surface yielded large 1H NMR signals of up to 3.4 μT-rms, corresponding to ∼330 statistically polarized or ∼10 fully polarized proton spins in a (1.8 nm)3 detection volume.

Collaboration


Dive into the S. Pezzagna's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. Jacques

École normale supérieure de Cachan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge