Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Qasim Mehdi is active.

Publication


Featured researches published by S. Qasim Mehdi.


Nature Genetics | 2000

Y chromosome sequence variation and the history of human populations

Peter A. Underhill; Peidong Shen; Alice A. Lin; Li Jin; Giuseppe Passarino; Wei H. Yang; Erin Kauffman; Batsheva Bonne-Tamir; Jaume Bertranpetit; Paolo Francalacci; Muntaser Ibrahim; Trefor Jenkins; S. Qasim Mehdi; Mark Seielstad; R. Spencer Wells; Alberto Piazza; Ronald W. Davis; Marcus W. Feldman; Luigi Luca Cavalli-Sforza; J. Oefner

Binary polymorphisms associated with the non-recombining region of the human Y chromosome (NRY) preserve the paternal genetic legacy of our species that has persisted to the present, permitting inference of human evolution, population affinity and demographic history. We used denaturing high-performance liquid chromatography (DHPLC; ref. 2) to identify 160 of the 166 bi-allelic and 1 tri-allelic site that formed a parsimonious genealogy of 116 haplotypes, several of which display distinct population affinities based on the analysis of 1062 globally representative individuals. A minority of contemporary East Africans and Khoisan represent the descendants of the most ancestral patrilineages of anatomically modern humans that left Africa between 35,000 and 89,000 years ago.


American Journal of Human Genetics | 2004

Where West Meets East: The Complex mtDNA Landscape of the Southwest and Central Asian Corridor

Lluis Quintana-Murci; Raphaëlle Chaix; R. Spencer Wells; Doron M. Behar; Hamid Sayar; Rosaria Scozzari; Chiara Rengo; Nadia Al-Zahery; Ornella Semino; A. Silvana Santachiara-Benerecetti; Alfredo Coppa; Qasim Ayub; Aisha Mohyuddin; Chris Tyler-Smith; S. Qasim Mehdi; Antonio Torroni; Ken McElreavey

The southwestern and Central Asian corridor has played a pivotal role in the history of humankind, witnessing numerous waves of migration of different peoples at different times. To evaluate the effects of these population movements on the current genetic landscape of the Iranian plateau, the Indus Valley, and Central Asia, we have analyzed 910 mitochondrial DNAs (mtDNAs) from 23 populations of the region. This study has allowed a refinement of the phylogenetic relationships of some lineages and the identification of new haplogroups in the southwestern and Central Asian mtDNA tree. Both lineage geographical distribution and spatial analysis of molecular variance showed that populations located west of the Indus Valley mainly harbor mtDNAs of western Eurasian origin, whereas those inhabiting the Indo-Gangetic region and Central Asia present substantial proportions of lineages that can be allocated to three different genetic components of western Eurasian, eastern Eurasian, and south Asian origin. In addition to the overall composite picture of lineage clusters of different origin, we observed a number of deep-rooting lineages, whose relative clustering and coalescent ages suggest an autochthonous origin in the southwestern Asian corridor during the Pleistocene. The comparison with Y-chromosome data revealed a highly complex genetic and demographic history of the region, which includes sexually asymmetrical mating patterns, founder effects, and female-specific traces of the East African slave trade.


American Journal of Human Genetics | 2003

The Genetic Legacy of the Mongols

Tatiana Zerjal; Yali Xue; Giorgio Bertorelle; R. Spencer Wells; Weidong Bao; Suling Zhu; Raheel Qamar; Qasim Ayub; Aisha Mohyuddin; Songbin Fu; Li P; Nadira Yuldasheva; Ruslan Ruzibakiev; Jiujin Xu; Qunfang Shu; Ruofu Du; Huanming Yang; Elizabeth J. Z. Robinson; Tudevdagva Gerelsaikhan; Bumbein Dashnyam; S. Qasim Mehdi; Chris Tyler-Smith

We have identified a Y-chromosomal lineage with several unusual features. It was found in 16 populations throughout a large region of Asia, stretching from the Pacific to the Caspian Sea, and was present at high frequency: approximately 8% of the men in this region carry it, and it thus makes up approximately 0.5% of the world total. The pattern of variation within the lineage suggested that it originated in Mongolia approximately 1,000 years ago. Such a rapid spread cannot have occurred by chance; it must have been a result of selection. The lineage is carried by likely male-line descendants of Genghis Khan, and we therefore propose that it has spread by a novel form of social selection resulting from their behavior.


American Journal of Human Genetics | 2008

Independent Introduction of Two Lactase-Persistence Alleles into Human Populations Reflects Different History of Adaptation to Milk Culture

Nabil Sabri Enattah; Tine G. K. Jensen; Mette Nielsen; Rikke Lewinski; Mikko Kuokkanen; Heli Rasinperä; Hatem El-Shanti; Jeong Kee Seo; Michael Alifrangis; Insaf F. Khalil; Abdrazak Natah; Ahmed Ali; Sirajedin S. Natah; David Comas; S. Qasim Mehdi; Leif Groop; Else Marie Vestergaard; Faiqa Imtiaz; Mohamed S. Rashed; Brian F. Meyer; Jesper T. Troelsen; Leena Peltonen

The T(-13910) variant located in the enhancer element of the lactase (LCT) gene correlates perfectly with lactase persistence (LP) in Eurasian populations whereas the variant is almost nonexistent among Sub-Saharan African populations, showing high prevalence of LP. Here, we report identification of two new mutations among Saudis, also known for the high prevalence of LP. We confirmed the absence of the European T(-13910) and established two new mutations found as a compound allele: T/G(-13915) within the -13910 enhancer region and a synonymous SNP in the exon 17 of the MCM6 gene T/C(-3712), -3712 bp from the LCT gene. The compound allele is driven to a high prevalence among Middle East population(s). Our functional analyses in vitro showed that both SNPs of the compound allele, located 10 kb apart, are required for the enhancer effect, most probably mediated through the binding of the hepatic nuclear factor 1 alpha (HNF1 alpha). High selection coefficient (s) approximately 0.04 for LP phenotype was found for both T(-13910) and the compound allele. The European T(-13910) and the earlier identified East African G(-13907) LP allele share the same ancestral background and most likely the same history, probably related to the same cattle domestication event. In contrast, the compound Arab allele shows a different, highly divergent ancestral haplotype, suggesting that these two major global LP alleles have arisen independently, the latter perhaps in response to camel milk consumption. These results support the convergent evolution of the LP in diverse populations, most probably reflecting different histories of adaptation to milk culture.


American Journal of Human Genetics | 2002

Y-Chromosomal DNA Variation in Pakistan

Raheel Qamar; Qasim Ayub; Aisha Mohyuddin; Agnar Helgason; Kehkashan Mazhar; Atika Mansoor; Tatiana Zerjal; Chris Tyler-Smith; S. Qasim Mehdi

Eighteen binary polymorphisms and 16 multiallelic, short-tandem-repeat (STR) loci from the nonrecombining portion of the human Y chromosome were typed in 718 male subjects belonging to 12 ethnic groups of Pakistan. These identified 11 stable haplogroups and 503 combination binary marker/STR haplotypes. Haplogroup frequencies were generally similar to those in neighboring geographical areas, and the Pakistani populations speaking a language isolate (the Burushos), a Dravidian language (the Brahui), or a Sino-Tibetan language (the Balti) resembled the Indo-European-speaking majority. Nevertheless, median-joining networks of haplotypes revealed considerable substructuring of Y variation within Pakistan, with many populations showing distinct clusters of haplotypes. These patterns can be accounted for by a common pool of Y lineages, with substantial isolation between populations and drift in the smaller ones. Few comparative genetic or historical data are available for most populations, but the results can be compared with oral traditions about origins. The Y data support the well-established origin of the Parsis in Iran, the suggested descent of the Hazaras from Genghis Khans army, and the origin of the Negroid Makrani in Africa, but do not support traditions of Tibetan, Syrian, Greek, or Jewish origins for other populations.


Nature Genetics | 2009

A common MYBPC3 (cardiac myosin binding protein C) variant associated with cardiomyopathies in South Asia

Perundurai S. Dhandapany; Sakthivel Sadayappan; Yali Xue; Gareth T. Powell; Deepa Selvi Rani; Prathiba Nallari; Taranjit Singh Rai; Madhu Khullar; Pedro Soares; Ajay Bahl; Jagan Mohan Tharkan; Pradeep Vaideeswar; Andiappan Rathinavel; Calambur Narasimhan; Dharma Rakshak Ayapati; Qasim Ayub; S. Qasim Mehdi; Stephen Oppenheimer; Martin B. Richards; Alkes L. Price; Nick Patterson; David Reich; Lalji Singh; Chris Tyler-Smith; Kumarasamy Thangaraj

Heart failure is a leading cause of mortality in South Asians. However, its genetic etiology remains largely unknown. Cardiomyopathies due to sarcomeric mutations are a major monogenic cause for heart failure (MIM600958). Here, we describe a deletion of 25 bp in the gene encoding cardiac myosin binding protein C (MYBPC3) that is associated with heritable cardiomyopathies and an increased risk of heart failure in Indian populations (initial study OR = 5.3 (95% CI = 2.3–13), P = 2 × 10−6; replication study OR = 8.59 (3.19–25.05), P = 3 × 10−8; combined OR = 6.99 (3.68–13.57), P = 4 × 10−11) and that disrupts cardiomyocyte structure in vitro. Its prevalence was found to be high (∼4%) in populations of Indian subcontinental ancestry. The finding of a common risk factor implicated in South Asian subjects with cardiomyopathy will help in identifying and counseling individuals predisposed to cardiac diseases in this region.


Nature Genetics | 2001

Insertion of β-satellite repeats identifies a transmembrane protease causing both congenital and childhood onset autosomal recessive deafness

Hamish S. Scott; Jun Kudoh; Marie Wattenhofer; Kazunori Shibuya; Asher Berry; Roman Chrast; Michel Guipponi; Jun Wang; Kazuhiko Kawasaki; Shuichi Asakawa; Shinsei Minoshima; Farah Younus; S. Qasim Mehdi; Uppala Radhakrishna; Marie Pierre Papasavvas; Corinne Gehrig; Colette Rossier; Michael Korostishevsky; Andreas Gal; Nobuyoshi Shimizu; Batsheva Bonne-Tamir

Approximately 50% of childhood deafness is caused by mutations in specific genes. Autosomal recessive loci account for approximately 80% of nonsyndromic genetic deafness. Here we report the identification of a new transmembrane serine protease (TMPRSS3; also known as ECHOS1) expressed in many tissues, including fetal cochlea, which is mutated in the families used to describe both the DFNB10 and DFNB8 loci. An 8-bp deletion and insertion of 18 monomeric (∼68-bp) β-satellite repeat units, normally present in tandem arrays of up to several hundred kilobases on the short arms of acrocentric chromosomes, causes congenital deafness (DFNB10). A mutation in a splice-acceptor site, resulting in a 4-bp insertion in the mRNA and a frameshift, was detected in childhood onset deafness (DFNB8). This is the first description of β-satellite insertion into an active gene resulting in a pathogenic state, and the first description of a protease involved in hearing loss.


American Journal of Human Genetics | 2004

A Comprehensive Survey of Human Y-Chromosomal Microsatellites

Manfred Kayser; Ralf Kittler; Axel Erler; Minttu Hedman; Andrew C. Lee; Aisha Mohyuddin; S. Qasim Mehdi; Zoë H. Rosser; Mark Stoneking; Mark A. Jobling; Antti Sajantila; Chris Tyler-Smith

We have screened the nearly complete DNA sequence of the human Y chromosome for microsatellites (short tandem repeats) that meet the criteria of having a repeat-unit size of > or = 3 and a repeat count of > or = 8 and thus are likely to be easy to genotype accurately and to be polymorphic. Candidate loci were tested in silico for novelty and for probable Y specificity, and then they were tested experimentally to identify Y-specific loci and to assess their polymorphism. This yielded 166 useful new Y-chromosomal microsatellites, 139 of which were polymorphic, in a sample of eight diverse Y chromosomes representing eight Y-SNP haplogroups. This large sample of microsatellites, together with 28 previously known markers analyzed here--all sharing a common evolutionary history--allowed us to investigate the factors influencing their variation. For simple microsatellites, the average repeat count accounted for the highest proportion of repeat variance (approximately 34%). For complex microsatellites, the largest proportion of the variance (again, approximately 34%) was explained by the average repeat count of the longest homogeneous array, which normally is variable. In these complex microsatellites, the additional repeats outside the longest homogeneous array significantly increased the variance, but this was lower than the variance of a simple microsatellite with the same total repeat count. As a result of this work, a large number of new, highly polymorphic Y-chromosomal microsatellites are now available for population-genetic, evolutionary, genealogical, and forensic investigations.


American Journal of Human Genetics | 2001

Y-chromosome lineages trace diffusion of people and languages in southwestern Asia

Lluis Quintana-Murci; Csilla Krausz; Tatiana Zerjal; S.Hamid Sayar; Michael F. Hammer; S. Qasim Mehdi; Qasim Ayub; Raheel Qamar; Aisha Mohyuddin; Uppala Radhakrishna; Mark A. Jobling; Chris Tyler-Smith; Ken McElreavey

The origins and dispersal of farming and pastoral nomadism in southwestern Asia are complex, and there is controversy about whether they were associated with cultural transmission or demic diffusion. In addition, the spread of these technological innovations has been associated with the dispersal of Dravidian and Indo-Iranian languages in southwestern Asia. Here we present genetic evidence for the occurrence of two major population movements, supporting a model of demic diffusion of early farmers from southwestern Iran-and of pastoral nomads from western and central Asia-into India, associated with Dravidian and Indo-European-language dispersals, respectively.


European Journal of Human Genetics | 2010

Separating the post-Glacial coancestry of European and Asian Y chromosomes within haplogroup R1a

Peter A. Underhill; Natalie M. Myres; Siiri Rootsi; Mait Metspalu; Roy King; Alice A. Lin; Cheryl-Emiliane T Chow; Ornella Semino; Vincenza Battaglia; Ildus Kutuev; Mari Järve; Gyaneshwer Chaubey; Qasim Ayub; Aisha Mohyuddin; S. Qasim Mehdi; Sanghamitra Sengupta; Evgeny I. Rogaev; Elza Khusnutdinova; Andrey Pshenichnov; Oleg Balanovsky; Elena Balanovska; Nina Jeran; Dubravka Havaš Auguštin; Marian Baldovic; Rene J. Herrera; Kumarasamy Thangaraj; Vijay Kumar Singh; Lalji Singh; Partha P. Majumder; Pavao Rudan

Human Y-chromosome haplogroup structure is largely circumscribed by continental boundaries. One notable exception to this general pattern is the young haplogroup R1a that exhibits post-Glacial coalescent times and relates the paternal ancestry of more than 10% of men in a wide geographic area extending from South Asia to Central East Europe and South Siberia. Its origin and dispersal patterns are poorly understood as no marker has yet been described that would distinguish European R1a chromosomes from Asian. Here we present frequency and haplotype diversity estimates for more than 2000 R1a chromosomes assessed for several newly discovered SNP markers that introduce the onset of informative R1a subdivisions by geography. Marker M434 has a low frequency and a late origin in West Asia bearing witness to recent gene flow over the Arabian Sea. Conversely, marker M458 has a significant frequency in Europe, exceeding 30% in its core area in Eastern Europe and comprising up to 70% of all M17 chromosomes present there. The diversity and frequency profiles of M458 suggest its origin during the early Holocene and a subsequent expansion likely related to a number of prehistoric cultural developments in the region. Its primary frequency and diversity distribution correlates well with some of the major Central and East European river basins where settled farming was established before its spread further eastward. Importantly, the virtual absence of M458 chromosomes outside Europe speaks against substantial patrilineal gene flow from East Europe to Asia, including to India, at least since the mid-Holocene.

Collaboration


Dive into the S. Qasim Mehdi's collaboration.

Top Co-Authors

Avatar

Shagufta Khaliq

Sindh Institute of Urology and Transplantation

View shared research outputs
Top Co-Authors

Avatar

Aisha Mohyuddin

Shifa College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Qasim Ayub

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Chris Tyler-Smith

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Abdul Hameed

Brazilian Institute of Geography and Statistics

View shared research outputs
Top Co-Authors

Avatar

Shomi S. Bhattacharya

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar

Raheel Qamar

COMSATS Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Annette Payne

Brunel University London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge