S. Sadavoy
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. Sadavoy.
Astronomy and Astrophysics | 2012
N. Schneider; T. Csengeri; M. Hennemann; F. Motte; P. Didelon; Christoph Federrath; Sylvain Bontemps; J. Di Francesco; D. Arzoumanian; V. Minier; P. André; T. Hill; A. Zavagno; Q. Nguyen-Luong; M. Attard; J.-Ph. Bernard; D. Elia; C. Fallscheer; Matthew Joseph Griffin; Jason M. Kirk; Ralf S. Klessen; V. Könyves; P. G. Martin; A. Men'shchikov; P. Palmeirim; Nicolas Peretto; M. Pestalozzi; D. Russeil; S. Sadavoy; T. Sousbie
For many years feedback processes generated by OB-stars in molecular clouds, including expanding ionization fronts, stellar winds, or UV-radiation, have been proposed to trigger subsequent star formation. However, hydrodynamic models including radiation and gravity show that UV-illumination has little or no impact on the global dynamical evolution of the cloud. The Rosette molecular cloud, irradiated by the NGC2244 cluster, is a template region for triggered star-formation, and we investigated its spatial and density structure by applying a curvelet analysis, a filament-tracing algorithm (DisPerSE), and probability density functions (PDFs) on Herschel column density maps, obtained within the HOBYS key program. The analysis reveals not only the filamentary structure of the cloud but also that all known infrared clusters except one lie at junctions of filaments, as predicted by turbulence simulations. The PDFs of sub-regions in the cloud show systematic differences. The two UV-exposed regions have a double-peaked PDF we interprete as caused by shock compression. The deviations of the PDF from the log-normal shape typically associated with low- and high-mass star-forming regions at Av~3-4m and 8-10m, respectively, are found here within the very same cloud. This shows that there is no fundamental difference in the density structure of low- and high-mass star-forming regions. We conclude that star-formation in Rosette - and probably in high-mass star-forming clouds in general - is not globally triggered by the impact of UV-radiation. Moreover, star formation takes place in filaments that arose from the primordial turbulent structure built up during the formation of the cloud. Clusters form at filament mergers, but star formation can be locally induced in the direct interaction zone between an expanding HII--region and the molecular cloud.
Astronomy and Astrophysics | 2015
V. Könyves; P. André; A. Men'shchikov; P. Palmeirim; D. Arzoumanian; N. Schneider; A. Roy; P. Didelon; A. Maury; Yoshito Shimajiri; J. Di Francesco; Sylvain Bontemps; Nicolas Peretto; M. Benedettini; J.-Ph. Bernard; D. Elia; Matthew James Griffin; T. Hill; Jason Matthew Kirk; B. Ladjelate; Kenneth A. Marsh; P. G. Martin; F. Motte; Q. Nguyen Luong; S. Pezzuto; H. Roussel; K. L. J. Rygl; S. Sadavoy; E. Schisano; L. Spinoglio
We present and discuss the results of the Herschel Gould Belt survey (HGBS) observations in an ~11 deg2 area of the Aquila molecular cloud complex at d ~ 260 pc, imaged with the SPIRE and PACS photometric cameras in parallel mode from 70 μm to 500 μm. Using the multi-scale, multi-wavelength source extraction algorithm getsources, we identify a complete sample of starless dense cores and embedded (Class 0-I) protostars in this region, and analyze their global properties and spatial distributions. We find a total of 651 starless cores, ~60% ± 10% of which are gravitationally bound prestellar cores, and they will likely form stars inthe future. We also detect 58 protostellar cores. The core mass function (CMF) derived for the large population of prestellar cores is very similar in shape to the stellar initial mass function (IMF), confirming earlier findings on a much stronger statistical basis and supporting the view that there is a close physical link between the stellar IMF and the prestellar CMF. The global shift in mass scale observed between the CMF and the IMF is consistent with a typical star formation efficiency of ~40% at the level of an individual core. By comparing the numbers of starless cores in various density bins to the number of young stellar objects (YSOs), we estimate that the lifetime of prestellar cores is ~1 Myr, which is typically ~4 times longer than the core free-fall time, and that it decreases with average core density. We find a strong correlation between the spatial distribution of prestellar cores and the densest filaments observed in the Aquila complex. About 90% of the Herschel-identified prestellar cores are located above a background column density corresponding to AV ~ 7, and ~75% of them lie within filamentary structures with supercritical masses per unit length ≳16 M⊙/pc. These findings support a picture wherein the cores making up the peak of the CMF (and probably responsible for the base of the IMF) result primarily from the gravitational fragmentation of marginally supercritical filaments. Given that filaments appear to dominate the mass budget of dense gas at AV> 7, our findings also suggest that the physics of prestellar core formation within filaments is responsible for a characteristic “efficiency” for the star formation process in dense gas.
The Astrophysical Journal | 2010
S. Sadavoy; James Di Francesco; Sylvain Bontemps; S. Thomas Megeath; Luisa Marie Rebull; Erin Allgaier; Sean J. Carey; Robert Allen Gutermuth; Joseph L. Hora; Tracy L. Huard; Caer-Eve McCabe; James Muzerolle; Alberto Noriega-Crespo; Deborah Lynne Padgett; Susan Terebey
Using data from the SCUBA Legacy Catalogue (850 μm) and Spitzer Space Telescope (3.6-70 μm), we explore dense cores in the Ophiuchus, Taurus, Perseus, Serpens, and Orion molecular clouds. We develop a new method to discriminate submillimeter cores found by Submillimeter Common-User Bolometer Array (SCUBA) as starless or protostellar, using point source photometry from Spitzer wide field surveys. First, we identify infrared sources with red colors associated with embedded young stellar objects (YSOs). Second, we compare the positions of these YSO candidates to our submillimeter cores. With these identifications, we construct new, self-consistent starless and protostellar core mass functions (CMFs) for the five clouds. We find best-fit slopes to the high-mass end of the CMFs of –1.26 ± 0.20, –1.22 ± 0.06, –0.95 ± 0.20, and –1.67 ± 0.72 for Ophiuchus, Taurus, Perseus, and Orion, respectively. Broadly, these slopes are each consistent with the –1.35 power-law slope of the Salpeter initial mass function at higher masses, but suggest some differences. We examine a variety of trends between these CMF shapes and their parent cloud properties, potentially finding a correlation between the high-mass slope and core temperature. We also find a trend between core mass and effective size, but we are very limited by sensitivity. We make similar comparisons between core mass and size with visual extinction (for A_V ≥ 3) and find no obvious trends. We also predict the numbers and mass distributions of cores that future surveys with SCUBA-2 may detect in each of these clouds.
The Astrophysical Journal | 2013
S. Sadavoy; J. Di Francesco; D. Johnstone; Malcolm J. Currie; E. Drabek; J. Hatchell; D. Nutter; P. André; D. Arzoumanian; M. Benedettini; J.-P. Bernard; A. Duarte-Cabral; C. Fallscheer; R. Friesen; J. S. Greaves; M. Hennemann; T. Hill; T. Jenness; V. Könyves; Brenda C. Matthews; J. C. Mottram; S. Pezzuto; A. Roy; K. L. J. Rygl; N. Schneider-Bontemps; L. Spinoglio; L. Testi; N. F. H. Tothill; Derek Ward-Thompson; G. J. White
We present Herschel observations from the Herschel Gould Belt Survey and SCUBA-2 science verification observations from the JCMT Gould Belt Survey of the B1 clump in the Perseus molecular cloud. We determined the dust emissivity index using four different techniques to combine the Herschel PACS+SPIRE data at 160 - 500 microns with the SCUBA-2 data at 450 microns and 850 microns. Of our four techniques, we found the most robust method was to filter-out the large-scale emission in the Herschel bands to match the spatial scales recovered by the SCUBA-2 reduction pipeline. Using this method, we find beta ~ 2 towards the filament region and moderately dense material and lower beta values (beta > 1.6) towards the dense protostellar cores, possibly due to dust grain growth. We find that beta and temperature are more robust with the inclusion of the SCUBA-2 data, improving estimates from Herschel data alone by factors of ~ 2 for beta and by ~ 40% for temperature. Furthermore, we find core mass differences of < 30% compared to Herschel-only estimates with an adopted beta = 2, highlighting the necessity of long wavelength submillimeter data for deriving accurate masses of prestellar and protostellar cores.
Monthly Notices of the Royal Astronomical Society | 2010
J. Buckle; Emily I. Curtis; J. F. Roberts; G. J. White; J. Hatchell; Christopher M. Brunt; Harold M. Butner; B. Cavanagh; A. Chrysostomou; Christopher J. Davis; A. Duarte-Cabral; Mireya Etxaluze; J. Di Francesco; Per Friberg; R. K. Friesen; G. A. Fuller; S. Graves; J. S. Greaves; M. R. Hogerheijde; D. Johnstone; Brenda C. Matthews; H. E. Matthews; D. Nutter; J. M. C. Rawlings; J. S. Richer; S. Sadavoy; Robert J. Simpson; N. F. H. Tothill; Y. G. Tsamis; Serena Viti
The Gould Belt Legacy Survey will survey nearby star-forming regions (within 500 pc), using HARP (Heterodyne Array Receiver Programme), SCUBA-2 (Submillimetre CommonUser Bolometer Array 2) and POL-2 (Polarimeter 2) on the James Clerk Maxwell Telescope (JCMT). This paper describes the initial data obtained using HARP to observe 12 CO, 13 CO and C 18 O J = 3! 2 towards two regions in Orion B, NGC 2024 and NGC 2071. We describe the physical characteristics of the two clouds, calculating temperatures and opacities utilizing all three isotopologues. We find good agreement between temperatures calculated from CO and from dust emission in the dense, energetic regions. We determine the mass and energetics of the clouds, and of the high-velocity material seen in 12 CO emission, and compare the relative energetics of the high- and low-velocity material in the two clouds. We present a CLUMPFIND analysis of the 13 CO condensations. The slope of the condensation mass functions, at the high-mass ends, is similar to the slope of the initial mass function.
Astronomy and Astrophysics | 2012
S. Pezzuto; D. Elia; E. Schisano; F. Strafella; J. Di Francesco; S. Sadavoy; P. André; M. Benedettini; J.-P. Bernard; A. M. di Giorgio; A. Facchini; M. Hennemann; T. Hill; V. Könyves; S. Molinari; F. Motte; Q. Nguyen-Luong; Nicolas Peretto; M. Pestalozzi; D. Polychroni; K. L. J. Rygl; P. Saraceno; N. Schneider; L. Spinoglio; L. Testi; Derek Ward-Thompson; G. J. White
We report far-infrared Herschel observations obtained between 70 μm and 500 μm of two star-forming dusty condensations, [HKM99] B1-bS and [HKM99] B1-bN, in the B1 region of the Perseus star-forming cloud. In the western part of the Perseus cloud, B1-bS is the only source detected in all six PACS and SPIRE photometric bands, but it is not visible in the Spitzer map at 24 μm. B1-bN is clearly detected between 100 μm and 250 μm. We have fitted the spectral energy distributions of these sources to derive their physical properties, and find that a simple greybody model fails to reproduce the observed spectral energy distributions. At least a two-component model is required, consisting of a central source surrounded by a dusty envelope. The properties derived from the fit, however, suggest that the central source is not a Class 0 object. We then conclude that while B1-bS and B1-bN appear to be more evolved than a pre-stellar core, the best-fit models suggest that their central objects are younger than a Class 0 source. Hence, they may be good candidates to be examples of the first hydrostatic core phase. The projected distance between B1-bS and B1-bN is a few Jeans lengths. If their physical separation is close to this value, this pair would allow studying the mutual interactions between two forming stars at a very early stage of their evolution.
Monthly Notices of the Royal Astronomical Society | 2015
K. Pattle; Derek Ward-Thompson; Jason Matthew Kirk; G. J. White; Emily Drabek-Maunder; J. V. Buckle; S. F. Beaulieu; David Berry; H. Broekhoven-Fiene; M. J. Currie; M. Fich; J. Hatchell; Helen Kirk; T. Jenness; D. Johnstone; J. C. Mottram; D. Nutter; Jaime E. Pineda; C. Quinn; C. Salji; S. Tisi; S. Walker-Smith; J. Di Francesco; M. R. Hogerheijde; P. André; Pierre Bastien; D. Bresnahan; Harold M. Butner; M. Chen; A. Chrysostomou
In this paper, we present the first observations of the Ophiuchus molecular cloud performed as part of the James Clerk Maxwell Telescope (JCMT) Gould Belt Survey (GBS) with the SCUBA-2 instrument. We demonstrate methods for combining these data with previous HARP CO, Herschel, and IRAM N2H+ observations in order to accurately quantify the properties of the SCUBA-2 sources in Ophiuchus. We produce a catalogue of all of the sources found by SCUBA-2. We separate these into protostars and starless cores. We list all of the starless cores and perform a full virial analysis, including external pressure. This is the first time that external pressure has been included in this level of detail. We find that the majority of our cores are either bound or virialized. Gravitational energy and external pressure are on average of a similar order of magnitude, but with some variation from region to region. We find that cores in the Oph A region are gravitationally bound prestellar cores, while cores in the Oph C and E regions are pressure-confined. We determine that N2H+ is a good tracer of the bound material of prestellar cores, although we find some evidence for N2H+ freeze-out at the very highest core densities. We find that non-thermal linewidths decrease substantially between the gas traced by C18O and that traced by N2H+, indicating the dissipation of turbulence at higher densities. We find that the critical Bonnor–Ebert stability criterion is not a good indicator of the boundedness of our cores. We detect the pre-brown dwarf candidate Oph B-11 and find a flux density and mass consistent with previous work. We discuss regional variations in the nature of the cores and find further support for our previous hypothesis of a global evolutionary gradient across the cloud from south-west to north-east, indicating sequential star formation across the region.
The Astrophysical Journal | 2014
S. Sadavoy; J. Di Francesco; P. André; S. Pezzuto; J.-P. Bernard; A. Maury; A. Men'shchikov; F. Motte; Q. Nguy˜ên-Lu'o'ng; N. Schneider; D. Arzoumanian; M. Benedettini; Sylvain Bontemps; D. Elia; M. Hennemann; T. Hill; V. Könyves; F. Louvet; Nicolas Peretto; A. Roy; G. J. White
We use PACS and SPIRE continuum data at 160 μm, 250 μm, 350 μm, and 500 μm from the Herschel Gould Belt Survey to sample seven clumps in Perseus: B1, B1-E, B5, IC 348, L1448, L1455, and NGC 1333. Additionally, we identify and characterize the embedded Class 0 protostars using detections of compact Herschel sources at 70 μm as well as archival Spitzer catalogs and SCUBA 850 μm photometric data. We identify 28 candidate Class 0 protostars, four of which are newly discovered sources not identified with Spitzer. We find that the star formation efficiency of clumps, as traced by Class 0 protostars, correlates strongly with the flatness of their respective column density distributions at high values. This correlation suggests that the fraction of high column density material in a clump reflects only its youngest protostellar population rather than its entire source population. We propose that feedback from either the formation or evolution of protostars changes the local density structure of clumps.
Nature | 2016
John J. Tobin; Kaitlin M. Kratter; M. V. Persson; Leslie W. Looney; Michael M. Dunham; Dominique Segura-Cox; Zhi Yun Li; Claire J. Chandler; S. Sadavoy; Robert J. Harris; Carl Melis; Laura M. Pérez
Binary and multiple star systems are a frequent outcome of the star formation process and as a result almost half of all stars with masses similar to that of the Sun have at least one companion star. Theoretical studies indicate that there are two main pathways that can operate concurrently to form binary/multiple star systems: large-scale fragmentation of turbulent gas cores and filaments or smaller-scale fragmentation of a massive protostellar disk due to gravitational instability. Observational evidence for turbulent fragmentation on scales of more than 1,000 astronomical units has recently emerged. Previous evidence for disk fragmentation was limited to inferences based on the separations of more-evolved pre-main sequence and protostellar multiple systems. The triple protostar system L1448 IRS3B is an ideal system with which to search for evidence of disk fragmentation as it is in an early phase of the star formation process, it is likely to be less than 150,000 years old and all of the protostars in the system are separated by less than 200 astronomical units. Here we report observations of dust and molecular gas emission that reveal a disk with a spiral structure surrounding the three protostars. Two protostars near the centre of the disk are separated by 61 astronomical units and a tertiary protostar is coincident with a spiral arm in the outer disk at a separation of 183 astronomical units. The inferred mass of the central pair of protostellar objects is approximately one solar mass, while the disk surrounding the three protostars has a total mass of around 0.30 solar masses. The tertiary protostar itself has a minimum mass of about 0.085 solar masses. We demonstrate that the disk around L1448 IRS3B appears susceptible to disk fragmentation at radii between 150 and 320 astronomical units, overlapping with the location of the tertiary protostar. This is consistent with models for a protostellar disk that has recently undergone gravitational instability, spawning one or two companion stars.
Monthly Notices of the Royal Astronomical Society | 2013
Jason M. Kirk; Derek Ward-Thompson; P. Palmeirim; P. André; Matthew Joseph Griffin; Peter Charles Hargrave; V. Könyves; J.-P. Bernard; D. Nutter; B. Sibthorpe; J. Di Francesco; Alain Abergel; D. Arzoumanian; M. Benedettini; Sylvain Bontemps; D. Elia; M. Hennemann; T. Hill; A. Men'shchikov; F. Motte; Q. Nguyen-Luong; Nicolas Peretto; S. Pezzuto; K. L. J. Rygl; S. Sadavoy; E. Schisano; N. Schneider; L. Testi; G. J. White
The whole of the Taurus region (a total area of 52 deg2) has been observed by the Herschel Spectral and Photometric Imaging Receiver (SPIRE) and Photodetector Array Camera and Spectrometer (PACS) instruments at wavelengths of 70, 160, 250, 350 and 500 μm as part of the Herschel Gould Belt Survey. In this paper we present the first results from the part of the Taurus region that includes the Barnard 18 and L1536 clouds. A new source-finding routine, the Cardiff Source-finding AlgoRithm (csar), is introduced, which is loosely based on clumpfind, but that also generates a structure tree, or dendrogram, which can be used to interpret hierarchical clump structure in a complex region. Sources were extracted from the data using the hierarchical version of csar and plotted on a mass–size diagram. We found a hierarchy of objects with sizes in the range 0.024–2.7 pc. Previous studies showed that gravitationally bound prestellar cores and unbound starless clumps appeared in different places on the mass–size diagram. However, it was unclear whether this was due to a lack of instrumental dynamic range or whether they were actually two distinct populations. The excellent sensitivity of Herschel shows that our sources fill the gap in the mass–size plane between starless and pre-stellar cores, and gives the first clear supporting observational evidence for the theory that unbound clumps and (gravitationally bound) prestellar cores are all part of the same population, and hence presumably part of the same evolutionary sequence.