S. Salman Ashraf
United Arab Emirates University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. Salman Ashraf.
Journal of Hazardous Materials | 2009
M.A. Rauf; S. Salman Ashraf
Synthetic dyes are a major part of our life. Products ranging from clothes to leather accessories to furniture all depend on extensive use of organic dyes. An unfortunate side effect of extensive use of these chemicals is that huge amounts of these potentially carcinogenic compounds enter our water supplies. Various advanced oxidation processes (AOPs) including the use of high-energy radiation have been developed to degrade these compounds. In this review, dye decoloration and degradation as a result of its exposure to high energy radiation such as gamma radiation and pulsed electron beam are discussed in detail. The role of various transient species such as H, OH and e(aq)(-) are taken into account as reported by various researchers. Literature citations in this area show that e(aq)(-) is very effective in decolorization but is less active in the further degradation of the products formed. The degradation of the dyes is initiated exclusively by OH attack on electron-rich sites of the dye molecules. Additionally, various parameters that affect the efficiency of radiation induced degradation of dyes, such as effect of radiation dose, oxygen, pH, hydrogen peroxide, added ions and dye classes are also reviewed and summarized. Lastly, pilot plant application of radiation for wastewater treatment is briefly discussed.
Seminars in Cancer Biology | 2015
Zongwei Wang; Charlotta Dabrosin; Xin Yin; Mark M. Fuster; Alexandra Arreola; W.Kimryn Rathmell; Daniele Generali; Ganji Purnachandra Nagaraju; Bassel F. El-Rayes; Domenico Ribatti; Yi Charlie Chen; Kanya Honoki; Hiromasa Fujii; Alexandros G. Georgakilas; Somaira Nowsheen; Amedeo Amedei; Elena Niccolai; Amr Amin; S. Salman Ashraf; Bill Helferich; Xujuan Yang; Gunjan Guha; Dipita Bhakta; Maria Rosa Ciriolo; Katia Aquilano; Sophie Chen; Dorota Halicka; Sulma I. Mohammed; Asfar S. Azmi; Alan Bilsland
Deregulation of angiogenesis – the growth of new blood vessels from an existing vasculature – is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding “the most important target” may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the “Halifax Project” within the “Getting to know cancer” framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor angiogenesis and the pathological tumor vasculature which would be well suited as targets for anti-angiogenic therapy: (1) endothelial cell migration/tip cell formation, (2) structural abnormalities of tumor vessels, (3) hypoxia, (4) lymphangiogenesis, (5) elevated interstitial fluid pressure, (6) poor perfusion, (7) disrupted circadian rhythms, (8) tumor promoting inflammation, (9) tumor promoting fibroblasts and (10) tumor cell metabolism/acidosis. Following this analysis, we scrutinized the available literature on broadly acting anti-angiogenic natural products, with a focus on finding qualitative information on phytochemicals which could inhibit these targets and came up with 10 prototypical phytochemical compounds: (1) oleanolic acid, (2) tripterine, (3) silibinin, (4) curcumin, (5) epigallocatechin-gallate, (6) kaempferol, (7) melatonin, (8) enterolactone, (9) withaferin A and (10) resveratrol. We suggest that these plant-derived compounds could be combined to constitute a broader acting and more effective inhibitory cocktail at doses that would not be likely to cause excessive toxicity. All the targets and phytochemical approaches were further cross-validated against their effects on other essential tumorigenic pathways (based on the “hallmarks” of cancer) in order to discover possible synergies or potentially harmful interactions, and were found to generally also have positive involvement in/effects on these other aspects of tumor biology. The aim is that this discussion could lead to the selection of combinations of such anti-angiogenic compounds which could be used in potent anti-tumor cocktails, for enhanced therapeutic efficacy, reduced toxicity and circumvention of single-agent anti-angiogenic resistance, as well as for possible use in primary or secondary cancer prevention strategies.
RNA | 1999
S. Salman Ashraf; Elzbieta Sochacka; Robert L. Cain; Richard H. Guenther; Andrzej Malkiewicz; Paul F. Agris
Escherichia coli tRNALysSUU, as well as human tRNALys3SUU, has 2-thiouridine derivatives at wobble position 34 (s2U*34). Unlike the native tRNALysSUU, the full-length, unmodified transcript of human tRNALys3UUU and the unmodified tRNALys3UUU anticodon stem/loop (ASLLys3UUU) did not bind AAA- or AAG-programmed ribosomes. In contrast, the completely unmodified yeast tRNAPhe anticodon stem/loop (ASLPheGAA) had an affinity (Kd = 136+/-49 nM) similar to that of native yeast tRNAPheGmAA (Kd = 103+/-19 nM). We have found that the single, site-specific substitution of s2U34 for U34 to produce the modified ASLLysSUU was sufficient to restore ribosomal binding. The modified ASLLysSUU bound the ribosome with an affinity (Kd = 176+/-62 nM) comparable to that of native tRNALysSUU (Kd = 70+/-7 nM). Furthermore, in binding to the ribosome, the modified ASLLys3SUU produced the same 16S P-site tRNA footprint as did native E. coli tRNALysSUU, yeast tRNAPheGmAA, and the unmodified ASLPheGAA. The unmodified ASLLys3UUU had no footprint at all. Investigations of thermal stability and structure monitored by UV spectroscopy and NMR showed that the dynamic conformation of the loop of modified ASLLys3SUU was different from that of the unmodified ASLLysUUU, whereas the stems were isomorphous. Based on these and other data, we conclude that s2U34 in tRNALysSUU and in other s2U34-containing tRNAs is critical for generating an anticodon conformation that leads to effective codon interaction in all organisms. This is the first example of a single atom substitution (U34-->s2U34) that confers the property of ribosomal binding on an otherwise inactive tRNA.
Seminars in Cancer Biology | 2015
Ramzi M. Mohammad; Irfana Muqbil; Leroy Lowe; Clement Yedjou; Hsue Yin Hsu; Liang Tzung Lin; Markus D. Siegelin; Carmela Fimognari; Nagi B. Kumar; Q. Ping Dou; Huanjie Yang; Abbas K. Samadi; Gian Luigi Russo; Carmela Spagnuolo; Swapan K. Ray; Mrinmay Chakrabarti; James D. Morre; Helen M. Coley; Kanya Honoki; Hiromasa Fujii; Alexandros G. Georgakilas; Amedeo Amedei; Elena Niccolai; Amr Amin; S. Salman Ashraf; William G. Helferich; Xujuan Yang; Chandra S. Boosani; Gunjan Guha; Dipita Bhakta
Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer.
Seminars in Cancer Biology | 2015
Wen Guo Jiang; Andrew James Sanders; M. Katoh; Hendrik Ungefroren; Frank Gieseler; Mark E. Prince; Sarah K. Thompson; Massimo Zollo; D. Spano; Punita Dhawan; Daniel Sliva; Pochi R. Subbarayan; Malancha Sarkar; Kanya Honoki; Hiromasa Fujii; Alexandros G. Georgakilas; Amedeo Amedei; Elena Niccolai; Amr Amin; S. Salman Ashraf; Lin Ye; William G. Helferich; Xujuan Yang; Chandra S. Boosani; Gunjan Guha; Maria Rosa Ciriolo; Katia Aquilano; Sophie Chen; Asfar S. Azmi; W. N. Keith
Cancer is a key health issue across the world, causing substantial patient morbidity and mortality. Patient prognosis is tightly linked with metastatic dissemination of the disease to distant sites, with metastatic diseases accounting for a vast percentage of cancer patient mortality. While advances in this area have been made, the process of cancer metastasis and the factors governing cancer spread and establishment at secondary locations is still poorly understood. The current article summarizes recent progress in this area of research, both in the understanding of the underlying biological processes and in the therapeutic strategies for the management of metastasis. This review lists the disruption of E-cadherin and tight junctions, key signaling pathways, including urokinase type plasminogen activator (uPA), phosphatidylinositol 3-kinase/v-akt murine thymoma viral oncogene (PI3K/AKT), focal adhesion kinase (FAK), β-catenin/zinc finger E-box binding homeobox 1 (ZEB-1) and transforming growth factor beta (TGF-β), together with inactivation of activator protein-1 (AP-1) and suppression of matrix metalloproteinase-9 (MMP-9) activity as key targets and the use of phytochemicals, or natural products, such as those from Agaricus blazei, Albatrellus confluens, Cordyceps militaris, Ganoderma lucidum, Poria cocos and Silybum marianum, together with diet derived fatty acids gamma linolenic acid (GLA) and eicosapentanoic acid (EPA) and inhibitory compounds as useful approaches to target tissue invasion and metastasis as well as other hallmark areas of cancer. Together, these strategies could represent new, inexpensive, low toxicity strategies to aid in the management of cancer metastasis as well as having holistic effects against other cancer hallmarks.
Archives of Biochemistry and Biophysics | 1991
Yuh-Cherng Chai; Che-Hun Jung; Chong-Kuei Lii; S. Salman Ashraf; Suzanne Hendrich; Bernhard Wolf; Helmut Sies; James A. Thomas
Abstract An S-thiolated 30-kDa protein has been purified from rat liver by two steps of ion-exchange chromatography. This monomeric protein has two “reactive” sulfhydryls that can be S-thiolated by glutathione (form a mixed disulfide with glutathione) in intact liver. The protein has been identified as carbonic anhydrase III by sequence analysis of tryptic peptides from the pure protein. The two “reactive” sulfhydryls on this protein can produce three different S-thiolated forms of the protein that can be separated by isoelectric focusing. Using this technique it was possible to study the S-thiolation and dethiolation reactions of the pure protein. The reduced form of this protein was S-thiolated both by thiol-disulfide exchange with glutathione disulfide and by oxyradical-initiated S-thiolation with reduced glutathione. The S-thiolation rate of this 30-kDa protein was somewhat slower than that of glycogen phosphorylase b by both S-thiolation mechanisms. The S-thiolated form of this protein was poorly dethiolated (i.e., reduced) by glutathione, cysteine, cysteamine, or coenzyme A alone. Enzymatic catalysis by two different enzymes (glutaredoxin and thioredoxinlike) greatly enhanced the dethiolation rate. These experiments suggest that carbonic anhydrase III is a major participant in the liver response to oxidative stress, and that the protein may be S-thiolated by two different nonenzymatic mechanisms and dethiolated by enzymatic reactions in intact cells. Thus, the S-thiolation/dethiolation of carbonic anhydrase III resembles glycogen phosphorylase and not creatine kinase.
Hepatology | 2011
Amr Amin; Alaaeldin A. Hamza; Khuloud Bajbouj; S. Salman Ashraf; Sayel Daoud
Saffron has been proposed as a promising candidate for cancer chemoprevention. The purpose of this investigation was to investigate the chemopreventive action and the possible mechanisms of saffron against diethylnitrosamine (DEN)‐induced liver cancer in rats. Administration of saffron at doses of 75, 150, and 300 mg/kg/day was started 2 weeks prior to the DEN injection and was continued for 22 weeks. Saffron significantly reduced the DEN‐induced increase in the number and the incidence of hepatic dyschromatic nodules. Saffron also decreased the number and the area of placental glutathione S‐transferase–positive foci in livers of DEN‐treated rats. Furthermore, saffron counteracted DEN‐induced oxidative stress in rats as assessed by restoration of superoxide dismutase, catalase, and glutathione‐S‐transferase levels and diminishing of myeloperoxidase activity, malondialdehyde and protein carbonyl formation in liver. The results of immunohistochemical staining of rat liver showed that saffron inhibited the DEN‐mediated elevations in numbers of cells positive for Ki‐67, cyclooxygenase 2, inducible nitric oxide synthase, nuclear factor‐kappa B p‐65, and phosphorylated tumor necrosis factor receptor. Saffron also blocked the depletion in the number of cells positive for TUNEL (terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick‐end labeling) and M30 CytoDeath in liver tissues of DEN‐treated rats. In vitro experiments carried out using HepG2 cells also confirmed these findings and showed inhibition of nuclear factor‐kappa B activation, increased cleavage of caspase‐3, as well as DNA damage and cell cycle arrest upon saffron treatment. Conclusion: This study provides evidence that saffron exerts a significant chemopreventive effect against liver cancer through inhibition of cell proliferation and induction of apoptosis. This report also shows some evidence that saffron protects rat liver from cancer via modulating oxidative damage and suppressing inflammatory response. (HEPATOLOGY 2011;)
Seminars in Cancer Biology | 2015
Lynnette R. Ferguson; Helen Chen; Andrew R. Collins; Marisa Connell; Giovanna Damia; Santanu Dasgupta; Meenakshi Malhotra; Alan K. Meeker; Amedeo Amedei; Amr Amin; S. Salman Ashraf; Katia Aquilano; Asfar S. Azmi; Dipita Bhakta; Alan Bilsland; Chandra S. Boosani; Sophie Chen; Maria Rosa Ciriolo; Hiromasa Fujii; Gunjan Guha; Dorota Halicka; William G. Helferich; W. Nicol Keith; Sulma I. Mohammed; Elena Niccolai; Xujuan Yang; Kanya Honoki; Virginia R. Parslow; Satya Prakash; Sarallah Rezazadeh
Genomic instability can initiate cancer, augment progression, and influence the overall prognosis of the affected patient. Genomic instability arises from many different pathways, such as telomere damage, centrosome amplification, epigenetic modifications, and DNA damage from endogenous and exogenous sources, and can be perpetuating, or limiting, through the induction of mutations or aneuploidy, both enabling and catastrophic. Many cancer treatments induce DNA damage to impair cell division on a global scale but it is accepted that personalized treatments, those that are tailored to the particular patient and type of cancer, must also be developed. In this review, we detail the mechanisms from which genomic instability arises and can lead to cancer, as well as treatments and measures that prevent genomic instability or take advantage of the cellular defects caused by genomic instability. In particular, we identify and discuss five priority targets against genomic instability: (1) prevention of DNA damage; (2) enhancement of DNA repair; (3) targeting deficient DNA repair; (4) impairing centrosome clustering; and, (5) inhibition of telomerase activity. Moreover, we highlight vitamin D and B, selenium, carotenoids, PARP inhibitors, resveratrol, and isothiocyanates as priority approaches against genomic instability. The prioritized target sites and approaches were cross validated to identify potential synergistic effects on a number of important areas of cancer biology.
Seminars in Cancer Biology | 2015
Mark A. Feitelson; Alla Arzumanyan; Rob J. Kulathinal; Stacy W. Blain; Randall F. Holcombe; Jamal Mahajna; Maria Marino; Maria L. Martinez-Chantar; Roman Nawroth; Isidro Sánchez-García; Dipali Sharma; Neeraj K. Saxena; Neetu Singh; Panagiotis J. Vlachostergios; Shanchun Guo; Kanya Honoki; Hiromasa Fujii; Alexandros G. Georgakilas; Alan Bilsland; Amedeo Amedei; Elena Niccolai; Amr Amin; S. Salman Ashraf; Chandra S. Boosani; Gunjan Guha; Maria Rosa Ciriolo; Katia Aquilano; Sophie Chen; Sulma I. Mohammed; Asfar S. Azmi
Proliferation is an important part of cancer development and progression. This is manifest by altered expression and/or activity of cell cycle related proteins. Constitutive activation of many signal transduction pathways also stimulates cell growth. Early steps in tumor development are associated with a fibrogenic response and the development of a hypoxic environment which favors the survival and proliferation of cancer stem cells. Part of the survival strategy of cancer stem cells may manifested by alterations in cell metabolism. Once tumors appear, growth and metastasis may be supported by overproduction of appropriate hormones (in hormonally dependent cancers), by promoting angiogenesis, by undergoing epithelial to mesenchymal transition, by triggering autophagy, and by taking cues from surrounding stromal cells. A number of natural compounds (e.g., curcumin, resveratrol, indole-3-carbinol, brassinin, sulforaphane, epigallocatechin-3-gallate, genistein, ellagitannins, lycopene and quercetin) have been found to inhibit one or more pathways that contribute to proliferation (e.g., hypoxia inducible factor 1, nuclear factor kappa B, phosphoinositide 3 kinase/Akt, insulin-like growth factor receptor 1, Wnt, cell cycle associated proteins, as well as androgen and estrogen receptor signaling). These data, in combination with bioinformatics analyses, will be very important for identifying signaling pathways and molecular targets that may provide early diagnostic markers and/or critical targets for the development of new drugs or drug combinations that block tumor formation and progression.
Applied Biochemistry and Biotechnology | 2005
Klaithem M. Alkaabi; Abeer Yafea; S. Salman Ashraf
Green fluorescent protein (GFP) is an unusually stable autofluorescent protein that is increasingly being exploited for many applications. In this report, we have used fluorescence spectroscopy to study the effect of pH on the denaturation of GFP with sodium dodecyl sulfate (SDS), urea, and heat. Surprisingly, SDS (up to 0.5%) did not have any significant effect on the fluorescence of GFP at pH 7.5 or 8.5 buffers; however, at pH 6.5, the protein lost all fluorescence within 1 min of incubation. Similarly, incubation of GFP with 8 M urea at 50°C resulted in time dependent denaturation of GFP, but only in pH 6.5 buffer. At higher pH values (pH 7.5 and pH 8.5), the GFP was quite stable in 8 M urea at 50°C, showing only a slight decrease in fluorescence. Heat denaturation of GFP was found to be pH dependent as well, with the denaturation being fastest at pH 6.5 as compared to pH 7.5 or pH 8.5. Like the denaturation studies, renaturation of heat-denatured GFP was most efficient at pH 8.5, followed by pH 7.5, and then pH 6.5. These results suggests that GFP undergoes a structural/stability shift between pH 6.5 and pH 7.5, with the GFP structure at pH 6.5 being very sensitive to denaturation by SDS, urea, and heat.