Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Seitz is active.

Publication


Featured researches published by S. Seitz.


The Astrophysical Journal | 2013

CLASH: three strongly lensed images of a candidate z ≈ 11 galaxy

Dan Coe; Adi Zitrin; Mauricio Carrasco; Xinwen Shu; Wei Zheng; Marc Postman; L. Bradley; Anton M. Koekemoer; R. J. Bouwens; Tom Broadhurst; A. Monna; Ole Host; Leonidas A. Moustakas; Holland C. Ford; John Moustakas; Arjen van der Wel; Megan Donahue; Steven A. Rodney; N. Benítez; S. Jouvel; S. Seitz; Daniel D. Kelson; P. Rosati

We present a candidate for the most distant galaxy known to date with a photometric redshift of z = 10.7+0.6 –0.4 (95% confidence limits; with z < 9.5 galaxies of known types ruled out at 7.2σ). This J-dropout Lyman break galaxy, named MACS0647-JD, was discovered as part of the Cluster Lensing and Supernova survey with Hubble (CLASH). We observe three magnified images of this galaxy due to strong gravitational lensing by the galaxy cluster MACSJ0647.7+7015 at z = 0.591. The images are magnified by factors of ~80, 7, and 2, with the brighter two observed at ~26th magnitude AB (~0.15 μJy) in the WFC3/IR F160W filter (~1.4-1.7 μm) where they are detected at 12σ. All three images are also confidently detected at 6σ in F140W (~1.2-1.6 μm), dropping out of detection from 15 lower wavelength Hubble Space Telescope filters (~0.2-1.4 μm), and lacking bright detections in Spitzer/IRAC 3.6 μm and 4.5 μm imaging (~3.2-5.0 μm). We rule out a broad range of possible lower redshift interlopers, including some previously published as high-redshift candidates. Our high-redshift conclusion is more conservative than if we had neglected a Bayesian photometric redshift prior. Given CLASH observations of 17 high-mass clusters to date, our discoveries of MACS0647-JD at z ~ 10.8 and MACS1149-JD at z ~ 9.6 are consistent with a lensed luminosity function extrapolated from lower redshifts. This would suggest that low-luminosity galaxies could have reionized the universe. However, given the significant uncertainties based on only two galaxies, we cannot yet rule out the sharp drop-off in number counts at z 10 suggested by field searches.


Nature | 2012

A magnified young galaxy from about 500 million years after the Big Bang

Wei Zheng; Marc Postman; Adi Zitrin; John Moustakas; Xinwen Shu; S. Jouvel; Ole Host; A. Molino; L. Bradley; Dan Coe; Leonidas A. Moustakas; Mauricio Carrasco; Holland C. Ford; N. Benítez; Tod R. Lauer; S. Seitz; R. J. Bouwens; Anton M. Koekemoer; Elinor Medezinski; Matthias Bartelmann; Tom Broadhurst; Megan Donahue; C. Grillo; Leopoldo Infante; Saurabh W. Jha; Daniel D. Kelson; Ofer Lahav; Doron Lemze; P. Melchior; Massimo Meneghetti

Re-ionization of the intergalactic medium occurred in the early Universe at redshift z ≈ 6–11, following the formation of the first generation of stars. Those young galaxies (where the bulk of stars formed) at a cosmic age of less than about 500 million years (z ≲ 10) remain largely unexplored because they are at or beyond the sensitivity limits of existing large telescopes. Understanding the properties of these galaxies is critical to identifying the source of the radiation that re-ionized the intergalactic medium. Gravitational lensing by galaxy clusters allows the detection of high-redshift galaxies fainter than what otherwise could be found in the deepest images of the sky. Here we report multiband observations of the cluster MACS J1149+2223 that have revealed (with high probability) a gravitationally magnified galaxy from the early Universe, at a redshift of z = 9.6 ± 0.2 (that is, a cosmic age of 490 ± 15 million years, or 3.6 per cent of the age of the Universe). We estimate that it formed less than 200 million years after the Big Bang (at the 95 per cent confidence level), implying a formation redshift of ≲14. Given the small sky area that our observations cover, faint galaxies seem to be abundant at such a young cosmic age, suggesting that they may be the dominant source for the early re-ionization of the intergalactic medium.Johns Hopkins University, 3701 San Martin Drive, Baltimore , MD 21218, U.S.A. Space Telescope Science Institute Universität Heidelberg University of California, San Diego University of Science and Technology of China University College London Institute de Ciencies de l’Espai Instituto de Astrofı́sica de Andalucı́a Jet Propulsion Laboratory, California Institute of Techno logy Pontificia Universidad Católica de Chile National Optical Astronomical Observatory Universitas Sternwarte, München Leiden Observatory University of Basque Country


The Astrophysical Journal | 2015

The KMOS3D survey: design, first results, and the evolution of galaxy kinematics from 0.7 ≤ z ≤ 2.7

Emily Wisnioski; N. M. Förster Schreiber; Stijn Wuyts; Eva Wuyts; K. Bandara; David J. Wilman; R. Genzel; Ralf Bender; R. Davies; Matteo Fossati; P. Lang; J. T. Mendel; A. Beifiori; Gabriel B. Brammer; J. Chan; M. Fabricius; Y. Fudamoto; Sandesh K. Kulkarni; J. Kurk; D. Lutz; Erica J. Nelson; Ivelina Momcheva; D. Rosario; R. P. Saglia; S. Seitz; L. J. Tacconi; P. G. van Dokkum

We present the KMOS3D survey, a new integral field survey of over 600 galaxies at 0.7 1, implying that the star-forming main sequence is primarily composed of rotating galaxies at both redshift regimes. When considering additional stricter criteria, the Hα kinematic maps indicate that at least ~70% of the resolved galaxies are disk-like systems. Our high-quality KMOS data confirm the elevated velocity dispersions reported in previous integral field spectroscopy studies at z 0.7. For rotation-dominated disks, the average intrinsic velocity dispersion decreases by a factor of two from 50 km s–1at z ~ 2.3 to 25 km s–1at z ~ 0.9. Combined with existing results spanning z ~ 0-3, we show that disk velocity dispersions follow an evolution that is consistent with the dependence of velocity dispersion on gas fractions predicted by marginally stable disk theory.


The Astrophysical Journal | 2014

A census of star-forming galaxies in the z ∼ 9-10 universe based on hst+spitzer observations over 19 clash clusters: Three candidate z ∼ 9-10 galaxies and improved constraints on the star formation rate density at z

R. J. Bouwens; L. Bradley; Adi Zitrin; D. Coe; Marijn Franx; W. Zheng; R. Smit; Ole Host; Marc Postman; Leonidas A. Moustakas; Ivo Labbé; Mauricio Carrasco; A. Molino; Megan Donahue; D. Kelson; Massimo Meneghetti; N. Benítez; Doron Lemze; Keiichi Umetsu; Tom Broadhurst; John Moustakas; P. Rosati; S. Jouvel; Matthias Bartelmann; Holland C. Ford; Genevieve J. Graves; C. Grillo; L. Infante; Y. Jimenez-Teja; Ofer Lahav

We utilise a two-color Lyman-Break selection criterion to search for z � 9-10 galaxies over the first 19 clusters in the CLASH program. Key to this search are deep observations over our clusters in five near-IR passbands to 1.6µm, allowing us good constraints on the position of the Lyman break to z � 10. A systematic search yields three z � 9-10 candidates in total above a 6� detection limit. While we have already reported the most robust of these candidates, MACS1149-JD, in a previous publication, two additional z � 9 candidates are also revealed in our expanded search. The new candidates have H160-band AB magnitudes of �26.2-26.9 and are located behind MACSJ1115.9+0129 and MACSJ1720.3+3536. The observed H160 Spitzer/IRAC colors for the sources are sufficiently blue to strongly favor redshifts of z � 9 for these sources. A careful assessment of various sources of contamination suggests .1 contaminants for our z � 9-10 selection. To determine the implications of these search results for the LF and SFR density at z � 9, we introduce a new differential approach to deriving these quantities in lensing fields. Our procedure is to derive the evolution by comparing the number of z � 9-10 galaxy candidates found in CLASH with the number of galaxies in a slightly lower redshift sample (after correcting for the differences in selection volumes), here taken to be z � 8. This procedure takes advantage of the fact that the relative selection volumes available for the z � 8 and z � 9-10 selections behind lensing clusters are not greatly dependent on the details of the gravitational lensing models. We find that the normalization of the UV LF at z � 9 is just 0.22 +0.30 −0.15 × that at z � 8, �2 +31× lower than what we would infer extrapolating z � 4-8 LF results. These results therefore suggest a more rapid evolution in the UV LF at z > 8 than seen at lower redshifts (although the current evidence here is weak). Compared to similar evolutionary findings from the HUDF, our result is much more insensitive to large-scale structure uncertainties, given our many independent sightlines on the high-redshift universe. Subject headings: galaxies: evolution — galaxies: high-redshift


The Astrophysical Journal | 2014

CLASH: Weak-lensing Shear-and-magnification Analysis of 20 Galaxy Clusters

Keiichi Umetsu; Elinor Medezinski; M. Nonino; Julian Merten; Marc Postman; M. Meneghetti; Megan Donahue; Nicole G. Czakon; A. Molino; S. Seitz; D. Gruen; Doron Lemze; I. Balestra; N. Benítez; A. Biviano; Tom Broadhurst; Holland C. Ford; C. Grillo; Anton M. Koekemoer; P. Melchior; A. Mercurio; John Moustakas; P. Rosati; Adi Zitrin

We present a joint shear-and-magnification weak-lensing analysis of a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19 ≾ z ≾ 0.69 selected from the Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis uses wide-field multi-color imaging, taken primarily with Suprime-Cam on the Subaru Telescope. From a stacked-shear-only analysis of the X-ray-selected subsample, we detect the ensemble-averaged lensing signal with a total signal-to-noise ratio of ≃ 25 in the radial range of 200-3500 kpc h^(–1), providing integrated constraints on the halo profile shape and concentration-mass relation. The stacked tangential-shear signal is well described by a family of standard density profiles predicted for dark-matter-dominated halos in gravitational equilibrium, namely, the Navarro-Frenk-White (NFW), truncated variants of NFW, and Einasto models. For the NFW model, we measure a mean concentration of c_(200c)=4.01^(+0.35)_(-0.32) at an effective halo mass of M_(200c)=1.34^(+0.10)_(-0.09) x 10^(15)M_☉. We show that this is in excellent agreement with Λ cold dark matter (ΛCDM) predictions when the CLASH X-ray selection function and projection effects are taken into account. The best-fit Einasto shape parameter is ɑ_E=0.191^(+0.071)_(-0.068), which is consistent with the NFW-equivalent Einasto parameter of ~0.18. We reconstruct projected mass density profiles of all CLASH clusters from a joint likelihood analysis of shear-and-magnification data and measure cluster masses at several characteristic radii assuming an NFW density profile. We also derive an ensemble-averaged total projected mass profile of the X-ray-selected subsample by stacking their individual mass profiles. The stacked total mass profile, constrained by the shear+magnification data, is shown to be consistent with our shear-based halo-model predictions, including the effects of surrounding large-scale structure as a two-halo term, establishing further consistency in the context of the ΛCDM model.


Monthly Notices of the Royal Astronomical Society | 2006

Parametric strong gravitational lensing analysis of Abell 1689

Aleksi Halkola; S. Seitz; M. Pannella

We have derived the mass distribution of galaxy cluster Abell 1689 within 0.3 h -1 70 Mpc of the cluster centre using its strong lensing (SL) effect on 32 background galaxies, which are mapped in altogether 107 multiple images. The multiple images are based on some from the literature with modifications to both include new and exclude some of the original image systems. The cluster profile is explored further out to ∼2.5 h -1 70 Mpc with weak lensing (WL) shear measurements from the literature. The masses of ∼200 cluster galaxies are measured with the Fundamental Plane (FP) in order to model accurately the small-scale mass structure in the cluster. The cluster galaxies are modelled as elliptical truncated isothermal spheres. The scalings of the truncation radii with the velocity dispersions of galaxies are assumed to match those of: (i) field galaxies; and (ii) theoretical expectations for galaxies in dense environments. The dark matter (DM) component of the cluster is described by either non-singular isothermal ellipsoids (NSIE) or elliptical versions of the universal DM profile (elliptical Navarro, Frenk & White, ENFW). To account for substructure in the DM we allow for two DM haloes. The fitting of a non-singular isothermal sphere (NSIS) to the smooth DM component results in a velocity dispersion of 1450 +39 -31 km s -1 and a core radius of 77 +10 -8 h -1 70 kpc, while a Navarro, Frenk & White (NFW) profile has an r 200 of 2.86 ± 0.16 h -1 70 Mpc (M 200 = 3.2 x 10 15 M ⊙ h 70 ) and a concentration of 4.7 +0.6 -0.5 . The total mass profile is well described by either a NSIS profile with σ = 1514 +18 -17 km s -1 and a core radius of r c = 71 ± 5 h -1 70 kpc, or an NFW profile with C = 6.0 ± 0.5 and r 200 = 2.82 ± 0.11 h -1 70 Mpc (M 200 = 3.0 x 10 15 M ⊙ h 70 ). The errors are assumed to be due to the error in assigning masses to the individual galaxies in the galaxy component. Their small size is due to the very strong constraints imposed by multiple images and the ability of the smooth DM component to adjust to uncertainties in the galaxy masses. The agreement in the total mass profile between this work and that of the literature is better than 1σ at all radii, despite the considerable differences in the methodology used. Using the same image configuration as used in the literature, we obtain a SL model that is superior to some in the literature (rms of 2.7 compared to 3.2 arcsec). This is very surprising considering the larger freedom in the surface mass profile in their grid modelling. The difference is most likely a result of the careful inclusion of the cluster galaxies. Using also WL shear measurements from the literature, we can constrain the profile further out to r ∼2.5 h -1 70 Mpc. The best-fitting parameters change to a = 1499 ± 15 km s -1 and r c = 66 ± 5 h -1 70 kpc for the NSIS profile and C = 7.6 ± 0.5 and r 200 = 2.55 ± 0.07 h -1 70 Mpc (M 200 = 2.3 x 10 15 M ⊙ h 70 ) for the NFW profile.


The Astrophysical Journal | 2014

Evidence for ubiquitous high-equivalent-width nebular emission in z ∼ 7 galaxies : toward a clean measurement of the specific star-formation rate using a sample of bright, magnified galaxies

R. Smit; R. J. Bouwens; Ivo Labbé; W. Zheng; L. Bradley; Megan Donahue; Doron Lemze; John Moustakas; Keiichi Umetsu; Adi Zitrin; D. Coe; Marc Postman; V. Gonzalez; Matthias Bartelmann; N. Benítez; Tom Broadhurst; Holland C. Ford; C. Grillo; L. Infante; Y. Jimenez-Teja; S. Jouvel; D. Kelson; Ofer Lahav; D. Maoz; Elinor Medezinski; P. Melchior; Massimo Meneghetti; Julian Merten; A. Molino; Leonidas A. Moustakas

Growing observational evidence indicates that nebular line emission has a significant impact on the rest-frame optical fluxes of z ~ 5-7 galaxies. This line emission makes z ~ 5-7 galaxies appear more massive, with lower specific star-formation rates (sSFRs). However, corrections for this line emission have been difficult to perform reliably because of huge uncertainties on the strength of such emission at z ≳ 5.5. In this paper, we present the most direct observational evidence thus far for ubiquitous high-equivalent-width (EW) [O III] + Hβ line emission in Lyman-break galaxies at z ~ 7, and we present a strategy for an improved measurement of the sSFR at z ~ 7. We accomplish this through the selection of bright galaxies in the narrow redshift window z ~ 6.6-7.0 where the Spitzer/Infrared Array Camera (IRAC) 4.5 μm flux provides a clean measurement of the stellar continuum light, in contrast with the 3.6 μm flux, which is contaminated by the prominent [O III] + Hβ lines. To ensure a high signal-to-noise ratio for our IRAC flux measurements, we consider only the brightest (H_(160) < 26 mag) magnified galaxies we have identified behind galaxy clusters. It is remarkable that the mean rest-frame optical color for our bright seven-source sample is very blue, [3.6]-[4.5] = –0.9 ± 0.3. Such blue colors cannot be explained by the stellar continuum light and require that the rest-frame EW of [O III] + Hβ is greater than 637 A for the average source. The four bluest sources from our seven-source sample require an even more extreme EW of 1582 A. We can also set a robust lower limit of ≳ 4 Gyr^(–1) on the sSFR of our sample based on the mean spectral energy distribution.


Monthly Notices of the Royal Astronomical Society | 2014

Photometric redshift analysis in the Dark Energy Survey science verification data

Carles Sánchez; M. Carrasco Kind; H. Lin; R. Miquel; F. B. Abdalla; Adam Amara; Mandakranta Banerji; C. Bonnett; Robert J. Brunner; D. Capozzi; A. Carnero; Francisco J. Castander; L. N. da Costa; C. E. Cunha; A. Fausti; D. W. Gerdes; N. Greisel; J. Gschwend; W. Hartley; S. Jouvel; Ofer Lahav; M. Lima; M. A. G. Maia; Pol Martí; R. Ogando; F. Ostrovski; P. S. Pellegrini; M. M. Rau; I. Sadeh; S. Seitz

We present results from a study of the photometric redshift performance of the Dark Energy Survey (DES), using the early data from a Science Verification (SV) period of observations in late 2012 and early 2013 that provided science-quality images for almost 200 sq.~deg.~at the nominal depth of the survey. We assess the photometric redshift performance using about 15000 galaxies with spectroscopic redshifts available from other surveys. These galaxies are used, in different configurations, as a calibration sample, and photo-


The Astrophysical Journal | 2015

CLASH: The CONCENTRATION-MASS RELATION of GALAXY CLUSTERS

Julian Merten; M. Meneghetti; Marc Postman; Keiichi Umetsu; Adi Zitrin; Elinor Medezinski; M. Nonino; Anton M. Koekemoer; P. Melchior; D. Gruen; Leonidas A. Moustakas; Matthias Bartelmann; Ole Host; Megan Donahue; D. Coe; A. Molino; S. Jouvel; A. Monna; S. Seitz; Nicole G. Czakon; Doron Lemze; Jack Sayers; I. Balestra; Piero Rosati; N. Benítez; A. Biviano; R. J. Bouwens; L. Bradley; Tom Broadhurst; Mauricio Carrasco

z


Astronomy and Astrophysics | 2004

The Tully-Fisher relation at intermediate redshift

Asmus Böhm; Bodo L. Ziegler; R. P. Saglia; Ralf Bender; K. J. Fricke; Armin Gabasch; J. Heidt; D. Mehlert; S. Noll; S. Seitz

s are obtained and studied using most of the existing photo-

Collaboration


Dive into the S. Seitz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adi Zitrin

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Postman

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

Anton M. Koekemoer

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Grillo

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

L. Bradley

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

Megan Donahue

Michigan State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge