Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Sengoku is active.

Publication


Featured researches published by S. Sengoku.


Nuclear Fusion | 1984

Energy confinement of beam-heated divertor and limiter discharges in Doublet III

M. Nagami; M. Kasai; A. Kitsunezaki; T. Kobayashi; S. Konoshima; T. Matsuda; N. Miya; H. Ninomiya; S. Sengoku; M. Shimada; H. Yokomizo; T. Angel; C. Armentrout; F. Blau; G. Bramson; N. Brooks; R. Chase; A. Colleraine; E. Fairbanks; J. Fasolo; R. Fisher; R.J. Groebner; T. Hino; R. Hong; G. Jahns; J. Kamperschroer; J. Kim; A. Lieber; J. Lohr; D. McColl

Observation of the intensity of the recycling particle flux at the main plasma edge for various limiter and divertor discharges indicates that the gross energy confinement of beam-heated discharges is closely related to the intensity of the edge particle flux. In limiter discharges, the global particle confinement time and the energy confinement time τE show many similarities: 1) linear Ip dependence at Ip < 600 kA, 2) no BT dependence, and 3) deterioration against injection power. Improvement of τE by increasing Ip, for example, is associated with high temperatures at the plasma edge region accompanied by reduced particle recycling. – Divertor discharges with low particle recycling around the main plasma show better energy confinement than limiter discharges at high plasma densities. The improvement of τE is primarily originated in the reduction of heat transport at the main plasma edge region, which is associated with the reduction of recycling particle flux at the main plasma edge. Under certain operation condition, for example, excessive cold-gas puffing, the discharge shows relatively high scrape-off plasma density and strong particle recycling between the main plasma and the limiter. The energy confinement time of these discharges degrades somewhat or reduces completely to that of the limiter discharge. – In low-recycling divertor discharges, the central electron and ion temperature is proportional to the injection power, and the plasma stored energy is proportional to ePabs (scales as INTOR scaling). With ≈ 4 MW beam injection, high-temperature and high-density plasmas were obtained (stored energy up to 280 kJ, Te(0) ≈ Ti(0) ≈ 2.5–3.0 keV at e ≈ (6–7) × 1013 cm−3, τE* ≈ 70 ms).


Nuclear Fusion | 1988

Development of a two-dimensional fluid code and its application to the Doublet III divertor experiment

Noriaki Ueda; Masao Kasai; M. Tanaka; Masayoshi Sugihara; S. Sengoku

A two-dimensional time dependent fluid code has been developed for transport processes in the edge plasma of a tokamak, coupled with a Monte Carlo method for neutral gas behaviour. The code employs a particle-incell method for the numerical solution of fluid equations. A simulation of the Doublet III divertor experiment has been performed with this code. It has been confirmed that the radial profiles of temperature and density in the scrape-off and divertor region can be simulated fairly well


Nuclear Fusion | 1985

Improvement of energy confinement time by continuous pellet fuelling in beam-heated Doublet III limiter discharges

S. Sengoku; M. Nagami; M. Abe; K. Hoshino; A. Kameari; A. Kitsunezaki; S. Konoshima; Tohru Matoba; A. Oikawa; M. Shimada; N. Suzuki; H. Takahashi; Keiji Tani; M. Washizu; C.A. Foster; S.L. Milora; S.E. Attenberger; R.E. Stockdale

A centrifuge injector that repetitively fires 1.3 mm deuterium pellets (1 torr⋅L per pellet) at a rate of 32 pellets per second was used to build up and maintain a Doublet III 2.4 MW neutral-beam-heated limiter discharge at a line-averaged density of 1 × 1014 cm−3. When compared to a conventional gas-fuelled plasma at similar density, the pellet-fuelled plasma was characterized by a factor-of-three reduction in edge neutral density and limiter recycling, a centrally peaked profile, a 70% increase in global energy confinement, and a tenfold increase in the fusion reaction rate.


Nuclear Fusion | 1984

Observation of very dense and cold divertor plasma in the beam-heated doublet III Tokamak with single-null poloidal divertor

S. Sengoku; M. Shimada; N. Miya; M. Kasai; H. Aikawa; M. Azumi; K. Hoshino; A. Kitsunezaki; T. Kobayashi; S. Konoshima; T. Matsuda; M. Nagami; H. Ninomiya; M. Nishikawa; T. Tokutake; Toshihiko Yamauchi; H. Yokomizo; K.H. Burrell; C.L. Kahn

A Langmuir probe array in the divertor plate has been used to investigate the dense, cold divertor plasma associated with remote radiative cooling in neutral-beam-heated, single-null open-divertor discharges in Doublet-Ill. With injected powers of up to 1.2 MW, the divertor plasma becomes denser and colder as the main plasma line-averaged density e increases, reaching ned= 2.8 X 1014 cm−3. Since the electron temperature drops to Ted = 3.5 eV under these conditions, this cold, dense plasma can provide a solution to the problem of wall erosion.


Nuclear Fusion | 1978

HEAT FLUX TO THE MATERIAL SURFACES IN A TOKAMAK

H. Kimura; H. Maeda; N. Ueda; Masahiro Seki; Hiroshi Kawamura; Shin Yamamoto; M. Nagami; K. Odajima; S. Sengoku; Y. Shimomura

Heat flux to the material surfaces in the scrape-off layer of a tokamak plasma is investigated experimentally. The time response of heat flux measurement has been improved to 0.2 ms by the recently developed thin-film thermometer. The result shows that the heat flux is calculated from a simple sheath model including secondary electron emission effects even if epithermal electrons are present.


Journal of Nuclear Materials | 1987

Confinement and fueling studies during additional heating phase in the JFT-2M tokamak

S. Sengoku; A. Funahashi; M. Hasegawa; K. Hoshino; S. Kasai; T. Kawakami; H. Kawashima; Tohru Matoba; T. Matsuda; H. Matsumoto; Y. Miura; M. Mori; K. Odajima; H. Ogawa; T. Ogawa; H. Ohtsuka; T. Shoji; N. Suzuki; S. Takada; H. Tamai; Y. Uesugi; T. Yamamoto

Increments of peripheral hydrogen/deuterium neutral gas pressures (PH2/PD2) during the additional heating phase (neutral beam and RF heatings) have been observed in a D2 gas-puff fueled JFT-2M tokamak with H2-absorbed graphite limiters/divertor plates. In the beam heating phase, a large increment of PH2 raises the plasma density 2 times or more without the degrading energy confinement time. The D2 gas-puff valve is closed in this phase. This improvement is interpreted as being due to “wall fueling”, i.e., fueling by desorbed hydrogen from the graphite wall by energetic particles. The first observation of the H-mode in the INTOR-type stubby open divertor with a short divertor channel (1–8 cm) at the high density regime (4–7 × 1013 cm−3) enhanced by the wall fueling is presented. The improved energy confinement time is comparable to or higher than that of ohmically heated discharges.


Nuclear Fusion | 2004

Performance of ITER as a burning plasma experiment

M. Shimada; V. Mukhovatov; G. Federici; Y. Gribov; A. Kukushkin; Y. Murakami; A. Polevoi; V.D. Pustovitov; S. Sengoku; M. Sugihara

Recent performance analysis has improved confidence in achieving Q (= fusion power/auxiliary heating power)≥ 10 in inductive operation in ITER. Performance analysis based on empirical scalings shows the feasibility of achieving Q ≥ 10 in inductive operation, particularly with improved modelling of helium exhaust. Analysis has also indicated the possibility that ITER can potentially demonstrate Q ~ 50, enabling studies of self-heated plasmas. Theory-based core modelling indicates the need for a high pedestal temperature (3.2–5.3 keV) to achieve Q ≥ 10, which is in the range of projections with presently available pedestal scalings. Pellet injection from the high-field side would be useful in enhancing Q and reducing edge localized mode (ELM) heat load in high plasma current operation. If the ELM heat load is not acceptable, it could be made tolerable by further tilting the target plate. Steady state operation scenarios at Q = 5 have been developed with modest requirements on confinement improvement and beta (HH98(y,2) ≥ 1.3 and βN ≥ 2.6). Stabilization of the resistive wall modes (RWMs), required in such regimes, is feasible with the present saddle coils and power supplies with double-wall structures taken into account. Recent analysis shows a potential of high power steady state operation with a fusion power of 0.7 GW at Q ~ 8. Achievement of the required βN ~ 3.6 by RWM stabilization is a possibility. Further analysis is also needed on reduction of the divertor target heat load.


Nuclear Fusion | 1988

Transition from the L-mode to the H-mode by electron cyclotron heating of a tokamak edge plasma

K. Hoshino; T. Yamamoto; N. Suzuki; H. Kawashima; S. Kasai; T. Kawakami; H. Maeda; Tohru Matoba; T. Matsuda; H. Matsumoto; Y. Miura; M. Mori; K. Odajima; H. Ogawa; T. Ogawa; K. Ohasa; S. Sengoku; T. Shoji; H. Tamai; Y. Uesugi; Toshihiko Yamauchi; A. Funahashi

Transitions of L-mode plasmas to the H-mode have been induced by an electron cyclotron heating (ECH) pulse. The transitions occur when ECH is applied to plasmas preheated either by a neutral beam or by waves in the ion cyclotron range of frequency with power levels well below their own threshold power for the H-mode transition. The position of the electron cyclotron resonance layer has been scanned and it has been shown that edge heating rather than central heating is effective in inducing the transition to the H-mode.


Nuclear Fusion | 1988

A new mode of improved confinement in discharges with stationary density in JFT-2M

M. Mori; N. Suzuki; Y. Uesugi; T. Ogawa; H. Ogawa; H. Ohtsuka; K. Odajima; S. Kasai; T. Kawakami; H. Kawashima; T. Shoji; S. Sengoku; H. Tamai; K. Hoshino; H. Matsumoto; T. Matsuda; Y. Miura; Toshihiko Yamauchi; T. Yamamoto; H. Maeda

A new mode of improved energy confinement, for which the confinement time is not worse or is sometimes even better than that for the well known H-mode and the density of which is in a quasi-stationary state, has been obtained in neutral beam heating experiments on JFT-2M. The new mode is different from the H-mode in many respects. The central electron temperature is higher in the new mode than in the H-mode. Radiation loss and density are reduced in the peripheral region but not in the central region. Therefore, the density and radiation profiles are highly peaked in the new mode, in contrast to the broad profiles in the H-mode. Particle confinement in the peripheral region seems to be worse in the new mode than in the H-mode. The new mode can be obtained in both divertor configurations and limiter discharges in JFT-2M.


Nuclear Fusion | 1987

H-mode phenomena during ICRF heating on JFT-2M

H. Matsumoto; T. Ogawa; H. Tamai; K. Odajima; M. Hasegawa; K. Hoshino; S. Kasai; T. Kawakami; H. Kawashima; Tohru Matoba; T. Matsuda; Y. Miura; M. Mori; H. Ogawa; H. Ohtsuka; S. Sengoku; T. Shoji; N. Suzuki; S. Takada; Y. Uesugi; T. Yamamoto; Toshihiko Yamauchi

Significant improvement of energy confinement has been observed on JFT-2M during ICRF heating. This improvement is preceded by a sudden drop in the Hα/Dα emission and a successive increase in stored plasma energy, electron density and radiation loss. This is believed to be the same phenomenon as the H-mode transition observed in ASDEX, and in PDX divertor experiments with neutral beam injection. However, in JFT-2M, this transition is observed both in limiter discharges and in open divertor configurations.

Collaboration


Dive into the S. Sengoku's collaboration.

Top Co-Authors

Avatar

Toshihiko Yamauchi

Japan Atomic Energy Research Institute

View shared research outputs
Top Co-Authors

Avatar

K. Odajima

Japan Atomic Energy Research Institute

View shared research outputs
Top Co-Authors

Avatar

S. Kasai

Japan Atomic Energy Research Institute

View shared research outputs
Top Co-Authors

Avatar

H. Maeda

Japan Atomic Energy Research Institute

View shared research outputs
Top Co-Authors

Avatar

H. Kawashima

Japan Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

T. Matsuda

Japan Atomic Energy Research Institute

View shared research outputs
Top Co-Authors

Avatar

K. Hoshino

Japan Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

H. Kimura

Japan Atomic Energy Research Institute

View shared research outputs
Top Co-Authors

Avatar

Y. Miura

Japan Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

H. Matsumoto

Japan Atomic Energy Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge