Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Stumbo is active.

Publication


Featured researches published by S. Stumbo.


SPIE's International Symposium on Optical Science, Engineering, and Instrumentation | 1998

Performance of a 4096-pixel photon counting chip

Maria Giuseppina Bisogni; M. Campbell; Maurizio Conti; Pasquale Delogu; Maria Evelina Fantacci; E.H.M. Heijne; P. Maestro; G. Magistrati; V. Marzulli; G. Meddeler; B Mikulec; E. Pernigotti; V. Rosso; C. Schwarz; W. Snoeys; S. Stumbo; J. Watt

A 4096 pixel Photon Counting Chip (PCC) has been developed and tested. It is aimed primarily at medical imaging although it can be used for other applications involving particle counting. The readout chip consists of a matrix of 64 by 64 identical square pixels, whose side measures 170 micrometers and is bump-bonded to a similar matrix of GaAs or Si pixel diodes covering a sensitive area of 1.18 cm2. The electronics in each cell comprises a preamplifier, a discriminator with variable threshold and a 3-bit threshold tune as well as a 15-bit counter. Each pixel can be individually addressed for electrical test or masked during acquisition. A shutter allows for switching between the counting and readout modes and the use of static logic in the counter enables long data taking periods. Electrical test of the chip have shown a maximum counting and readout modes and the use of static logic in the counter enables long data taking periods. Electrical test of the chip have shown a maximum counting rate of up to 2 MHz in each pixel. The minimum reachable threshold is 1400 e with a variation of 350 e rms that can be reduced to 80 e rms after tuning with the 3-bit adjustment. Electrical noise at the input is 170 e rms. Several read-out chips have been bump bonded to 200 micrometers thick GaAs pixel detectors. Test with (gamma) -ray and (beta) sources have been carried out. A number of objects have been imaged and a 260 micrometers thick aluminum foil which represents a contrast to the surrounding air of only 1.9 percent has been correctly imaged.


Medical Physics | 2004

Direct analysis of molybdenum target generated x-ray spectra with a portable device

S. Stumbo; U. Bottigli; Bruno Golosio; P. Oliva; S. Tangaro

In routine applications, information about the photon flux of x-ray tubes is obtained from exposure measurements and cataloged spectra. This approach relies mainly on the assumption that the real spectrum is correctly approximated by the cataloged one, once the main characteristics of the tube such as voltage, target material, anode angle, and filters are taken account of. In practice, all this information is not always available. Moreover, x-ray tubes with the same characteristics may have different spectra. We describe an apparatus that should be useful for quality control in hospitals and for characterizing new radiographic systems. The apparatus analyzes the spectrum generated by an x-ray mammographic unit. It is based on a commercial CZT produced by AMPTEK Inc. and a set of tungsten collimator disks. The electronics of the CZT are modified so as to obtain a faster response. The signal is digitized using an analog to digital converter with a sampling frequency of up to 20 MHz. The whole signal produced by the x-ray tube is acquired and analyzed off-line in order to accurately recognize pile-up events and reconstruct the emitted spectrum. The energy resolution has been determined using a calibrated x-ray source. Spectra were validated by comparison of the HVL measured using an ionization chamber.


Medical Physics | 2006

Comparison of two portable solid state detectors with an improved collimation and alignment device for mammographic x-ray spectroscopy

U. Bottigli; Bruno Golosio; Giovanni Luca Christian Masala; P. Oliva; S. Stumbo; Pasquale Delogu; Maria Evelina Fantacci; L. Abbene; F. Fauci; G. Raso

We describe a portable system for mammographic x-ray spectroscopy, based on a 2 X 2 X 1 mm3 cadmium telluride (CdTe) solid state detector, that is greatly improved over a similar system based on a 3 X 3 X 2 mm3 cadmium zinc telluride (CZT) solid state detector evaluated in an earlier work. The CdTe system utilized new pinhole collimators and an alignment device that facilitated measurement of mammographic x-ray spectra. Mammographic x-ray spectra acquired by each system were comparable. Half value layer measurements obtained using an ion chamber agreed closely with those derived from the x-ray spectra measured by either detector. The faster electronics and other features of the CdTe detector allowed its use with a larger pinhole collimator than could be used with the CZT detector. Additionally, the improved pinhole collimator and alignment features of the apparatus permitted much more rapid setup for acquisition of x-ray spectra than was possible on the system described in the earlier work. These improvements in detector technology, collimation and ease of alignment, as well as low cost, make this apparatus attractive as a tool for both laboratory research and advanced mammography quality control.


nuclear science symposium and medical imaging conference | 1999

Low contrast imaging with a GaAs pixel digital detector

S.R. Amendolia; Maria Giuseppina Bisogni; U. Bottigli; M. A. Ciocci; Pasquale Delogu; Giovanna Dipasquale; Maria Evelina Fantacci; Michele Faucci Giannelli; P. Maestro; Vincenzo M. Marzulli; E. Pernigotti; V. Rosso; Arnaldo Stefanini; S. Stumbo

A digital mammography system based on a GaAs pixel detector has been developed by the INFN (Istituto Nazionale di Fisica Nucleare) collaboration MED46. The high atomic number makes the GaAs a very efficient material for low energy X-ray detection (10-30 keV is the typical energy range used in mammography). Low contrast details can be detected with a significant dose reduction to the patient. The system presented in this paper consists of a 4096 pixel matrix built on a 200 /spl mu/m thick semi-insulating GaAs substrate. The pixel size is 170/spl times/170 /spl mu/m/sup 2/ for a total active area of 1.18 cm/sup 2/. The detector is bump-bonded to a VLSI front-end chip which implements a single-photon counting architecture. This feature allows to enhance the radiographic contrast detection with respect to charge integrating devices. The system has been tested by using a standard mammographic tube. Images of mammographic phantoms will be presented and compared with radiographs obtained with traditional film/screen systems. Monte Carlo simulations have been also performed to evaluate the imaging capability of the system. Comparison with simulations and experimental results will be shown.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1999

GaAs pixel radiation detector as an autoradiography tool for genetic studies

E. Bertolucci; Maurizio Conti; Giovanni Mettivier; P. Russo; S.R. Amendolia; Maria Giuseppina Bisogni; U. Bottigli; A. Ceccopieri; M. A. Ciocci; Pasquale Delogu; Maria Evelina Fantacci; P. Maestro; V. Marzulli; E. Pernigotti; N Romeo; V. Rosso; A. Stefanini; S. Stumbo

Abstract We present an autoradiography tool to be used mainly for genetic studies. It performs a quantitative analysis of radioactivity and can follow a dynamic process. We designed several applications, in particular one aimed at detecting hybridization of radio-labeled DNA fragments with known DNA-probes deposited on a micro-array. The technique is based on GaAs pixel array detector and low threshold, large dynamic range and good sensitivity integrated electronics developed for medical applications, suitable to detect markers (gamma or beta) such as 14C, 35S, 33P, 32P, 125I, even at very low activities. A Monte Carlo simulation of β− detection in GaAs is presented here in order to study the spatial resolution characteristics of such a system. For several biological applications, the electronics is required to perform at high temperatures (from 37° to 68°): we present here studies of noise and minimum threshold as a function of the temperature.


nuclear science symposium and medical imaging conference | 2004

The MAGIC-5 Project: medical applications on a GRID infrastructure connection

R. Bellotti; S. Bagnasco; U. Bottigli; Marcello Castellano; Rosella Cataldo; Ezio Catanzariti; P. Cerello; Sc Cheran; F. De Carlo; P. Delogu; I. De Mitri; G. De Nunzio; Me Fantacci; F. Fauci; G. Forni; G. Gargano; Bruno Golosio; Pl Indovina; A. Lauria; El Torres; R. Magro; D. Martello; Giovanni Luca Christian Masala; R. Massafra; P. Oliva; Rosa Palmiero; Ap Martinez; R Prevete; L. Ramello; G. Raso

The MAGIC-5 Project aims at developing computer aided detection (CAD) software for medical applications on distributed databases by means of a GRID infrastructure connection. The use of automatic systems for analyzing medical images is of paramount importance in the screening programs, due to the huge amount of data to check. Examples are: mammographies for breast cancer detection, computed-tomography (CT) images for lung cancer analysis, and the positron emission tomography (PET) imaging for the early diagnosis of the Alzheimer disease. The need for acquiring and analyzing data stored in different locations requires a GRID approach of distributed computing system and associated data management. The GRID technologies allow remote image analysis and interactive online diagnosis, with a relevant reduction of the delays actually associated to the screening programs. From this point of view, the MAGIC-5 Collaboration can be seen as a group of distributed users sharing their resources for implementing different virtual organizations (VO), each one aiming at developing screening programs, tele-training, tele-diagnosis and epidemiologic studies for a particular pathology.


Journal of Applied Physics | 2008

Phase contrast imaging simulation and measurements using polychromatic sources with small source-object distances

Bruno Golosio; Pasquale Delogu; Irene Zanette; M. Carpinelli; Giovanni Luca Christian Masala; P. Oliva; A. Stefanini; S. Stumbo

Phase contrast imaging is a technique widely used in synchrotron facilities for nondestructive analysis. Such technique can also be implemented through microfocus x-ray tube systems. Recently, a relatively new type of compact, quasimonochromatic x-ray sources based on Compton backscattering has been proposed for phase contrast imaging applications. In order to plan a phase contrast imaging system setup, to evaluate the system performance and to choose the experimental parameters that optimize the image quality, it is important to have reliable software for phase contrast imaging simulation. Several software tools have been developed and tested against experimental measurements at synchrotron facilities devoted to phase contrast imaging. However, many approximations that are valid in such conditions (e.g., large source-object distance, small transverse size of the object, plane wave approximation, monochromatic beam, and Gaussian-shaped source focal spot) are not generally suitable for x-ray tubes and othe...


PROCEEDINGS OF SPIE, THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING | 2002

Search of microcalcification clusters with the CALMA CAD station

Maria Evelina Fantacci; U. Bottigli; Pasquale Delogu; F. Fauci; Bruno Golosio; A. Lauria; Rosa Palmiero; G. Raso; S. Stumbo; Sabina Tangaro

CALMA (Computer Assisted Library for Mammography), a collaboration among physicists and radiologists, has collected a large database of digitized mammographic images (about 5000) and developed a CAD (Computer Aided Detection) which can be used also for digitization, as archive and to perform statistical analysis. In this work we present the results obtained in the automatic search of microcalcification clusters. Images (18x24 cm2, digitized by a CCD linear scanner with a 85micrometers pitch and 4096 gray levels) are fully characterized: pathological ones have a consistent description with radiologists diagnosis and histological data; non pathological ones correspond to patients with a follow up of at least three years. The automated microcalcification clusters analysis is made using a hybrid approach containing both algorithms and neural networks by which are extracted the ROIs (Region Of Interest). These ROIs are indicated on the images and a probability of containing a microcalcification cluster is associated to each ROI. The results obtained with this analysis are described in terms of the ROC (Receiver Operating Characteristic) curve, which shows the true positive fraction (sensitivity) as a function of the false positive fraction (1-specificity) obtained varying the threshold level of the ROI selection procedure.


arXiv: Medical Physics | 2003

Diagnostic performance of radiologists with and without different CAD systems for mammography

A. Lauria; Maria Evelina Fantacci; U. Bottigli; Pasquale Delogu; F. Fauci; Bruno Golosio; Pietro Luigi Indovina; Giovanni Luca Christian Masala; P. Oliva; Rosa Palmiero; G. Raso; S. Stumbo; Sabina Tangaro

The purpose of this study is the evaluation of the variation of performance in terms of sensitivity and specificity of two radiologists with different experience in mammography, with and without the assistance of two different CAD systems. The CAD considered are SecondLookTM (CADx Medical Systems, Canada), and CALMA (Computer Assisted Library in MAmmography). The first is a commercial system, the other is the result of a research project, supported by INFN (Istituto Nazionale di Fisica Nucleare, Italy); their characteristics have already been reported in literature. To compare the results with and without these tools, a dataset composed by 70 images of patients with cancer (biopsy proven) and 120 images of healthy breasts (with a three years follow up) has been collected. All the images have been digitized and analysed by two CAD, then two radiologists with respectively 6 and 2 years of experience in mammography indipendently made their diagnosis without and with, the support of the two CAD systems. In this work sensitivity and specificity variation, the Az area under the ROC curve, are reported. The results show that the use of a CAD allows for a substantial increment in sensitivity and a less pronounced decrement in specificity. The extent of these effects depends on the experience of the readers and is comparable for the two CAD considered.


Medical Physics | 2009

Compact x-ray sources for mammographic applications: Monte Carlo simulations of image quality

P. Oliva; Bruno Golosio; S. Stumbo; Alberto Bravin; P. Tomassini

Thomson scattering x-ray sources can provide spectral distributions that are ideally suited for mammography with sufficient fluence rates. In this article, the authors investigate the effects of different spectral distributions on the image quality in simulated images of a breast mammographic phantom containing details of different compositions and thicknesses. They simulated monochromatic, quasimonochromatic, and polychromatic x-ray sources in order to define the energy for maximum figure of merit (signal-difference-to-noise ratio squared/mean glandular dose), the effect of an energy spread, and the effect of the presence of higher-order harmonics. The advantages of these sources with respect to conventional polychromatic sources as a function of phantom and detail thickness were also investigated. The results show that the energy for the figure of merit peak is between 16 and 27.4 keV, depending on the phantom thickness and detail composition and thickness. An energy spread of about 1 keV standard deviation, easily achievable with compact x-ray sources, does not appreciably affect the image quality.

Collaboration


Dive into the S. Stumbo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Oliva

University of Sassari

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Raso

University of Palermo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Fauci

University of Palermo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge