Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Szutowicz is active.

Publication


Featured researches published by S. Szutowicz.


Nature | 2011

Ocean-like water in the Jupiter-family comet 103P/Hartley 2

Paul Hartogh; Dariusz C. Lis; Dominique Bockelee-Morvan; Miguel de Val-Borro; Nicholas Biver; M. Küppers; M. Emprechtinger; Edwin A. Bergin; Jacques Crovisier; Miriam Rengel; R. Moreno; S. Szutowicz; Geoffrey A. Blake

For decades, the source of Earths volatiles, especially water with a deuterium-to-hydrogen ratio (D/H) of (1.558 ± 0.001) × 10−4, has been a subject of debate. The similarity of Earth’s bulk composition to that of meteorites known as enstatite chondrites suggests a dry proto-Earth with subsequent delivery of volatiles by local accretion or impacts of asteroids or comets. Previous measurements in six comets from the Oort cloud yielded a mean D/H ratio of (2.96 ± 0.25) × 10−4. The D/H value in carbonaceous chondrites, (1.4 ± 0.1) × 10−4, together with dynamical simulations, led to models in which asteroids were the main source of Earths water, with ≤10 per cent being delivered by comets. Here we report that the D/H ratio in the Jupiter-family comet 103P/Hartley 2, which originated in the Kuiper belt, is (1.61 ± 0.24) × 10−4. This result substantially expands the reservoir of Earth ocean-like water to include some comets, and is consistent with the emerging picture of a complex dynamical evolution of the early Solar System.


Astronomy and Astrophysics | 2012

Herschel measurements of the D/H and 16 O/ 18 O ratios in water in the Oort-cloud comet C/2009 P1 (Garradd) ⋆

Dominique Bockelee-Morvan; N. Biver; B. M. Swinyard; M. de Val-Borro; Jacques Crovisier; Paul Hartogh; D. C. Lis; R. Moreno; S. Szutowicz; Emmanuel Lellouch; M. Emprechtinger; Geoffrey A. Blake; R. Courtin; C. Jarchow; M. Kidger; M. Küppers; Miriam Rengel; G. R. Davis; T. Fulton; David A. Naylor; S. Sidher; H. Walker

The D/H ratio in cometary water is believed to be an important indicator of the conditions under which icy planetesimals formed and can provide clues to the contribution of comets to the delivery of water and other volatiles to Earth. Available measurements suggest that there is isotopic diversity in the comet population. The Herschel Space Observatory revealed an ocean-like ratio in the Jupiter-family comet 103P/Hartley 2, whereas most values measured in Oort-cloud comets are twice as high as the ocean D/H ratio. We present here a new measurement of the D/H ratio in the water of an Oort-cloud comet. HDO, H_2O, and H_2^(18) lines were observed with high signal-to-noise ratio in comet C/2009 P1 (Garradd) using the Herschel HIFI instrument. Spectral maps of two water lines were obtained to constrain the water excitation. The D/H ratio derived from the measured H_2^(16)O and HDO production rates is (2.06 ± 0.22) × 10^(-4). This result shows that the D/H in the water of Oort-cloud comets is not as high as previously thought, at least for a fraction of the population, hence the paradigm of a single, archetypal D/H ratio for all Oort-cloud comets is no longer tenable. Nevertheless, the value measured in C/2009 P1 (Garradd) is significantly higher than the Earth’s ocean value of 1.558 × 10^(-4). The measured ^(16)O/^(18)O ratio of 523 ± 32 is, however, consistent with the terrestrial value.


The Astrophysical Journal | 2013

A HERSCHEL STUDY OF D/H IN WATER IN THE JUPITER-FAMILY COMET 45P/HONDA-MRKOS-PAJDUŠÁKOVÁ AND PROSPECTS FOR D/H MEASUREMENTS WITH CCAT

D. C. Lis; N. Biver; Dominique Bockelee-Morvan; Paul Hartogh; Edwin A. Bergin; Geoffrey A. Blake; Jacques Crovisier; M. de Val-Borro; Emmanuel Jehin; M. Küppers; Jean Manfroid; R. Moreno; Miriam Rengel; S. Szutowicz

We present Herschel observations of water isotopologues in the atmosphere of the Jupiter-family comet 45P/Honda–Mrkos–Pajdusakova. No HDO emission is detected, with a 3σ upper limit of 2.0 × 10^(−4) for the D/H ratio. This value is consistent with the earlier Herschel measurement in the Jupiter-family comet 103P/Hartley 2. The canonical value of 3 × 10^(−4) measured pre-Herschel in a sample of Oort-cloud comets can be excluded at a 4.5σ level. The observations presented here further confirm that a diversity of D/H ratios exists in the comet population and emphasize the need for additional measurements with future ground-based facilities, such as CCAT, in the post-Herschel era.


Astronomy and Astrophysics | 2010

First results of Herschel-PACS observations of Neptune

E. Lellouch; Paul Hartogh; Helmut Feuchtgruber; B. Vandenbussche; T. de Graauw; R. Moreno; C. Jarchow; T. Cavalié; Glenn S. Orton; M. Banaszkiewicz; M. I. Blecka; Dominique Bockelee-Morvan; Jacques Crovisier; Thérèse Encrenaz; T. Fulton; M. Küppers; L. M. Lara; Dariusz C. Lis; Alexander S. Medvedev; Miriam Rengel; Hideo Sagawa; B. M. Swinyard; S. Szutowicz; F. Bensch; Edwin A. Bergin; F. Billebaud; N. Biver; Geoffrey A. Blake; J. A. D. L. Blommaert; J. Cernicharo

We report on the initial analysis of a Herschel-PACS full range spectrum of Neptune, covering the 51–220 μm range with a mean resolving power of ~3000, and complemented by a dedicated observation of CH_4 at 120 μm. Numerous spectral features due to HD (R(0) and R(1)), H_(2)O, CH_4, and CO are present, but so far no new species have been found. Our results indicate that (i) Neptunes mean thermal profile is warmer by ~3 K than inferred from the Voyager radio-occultation; (ii) the D/H mixing ratio is (4.5 ± 1) × 10^(-5), confirming the enrichment of Neptune in deuterium over the protosolar value (~2.1 × 10^(-5)); (iii) the CH_4 mixing ratio in the mid stratosphere is (1.5 ± 0.2) × 10^(-3), and CH_4 appears to decrease in the lower stratosphere at a rate consistent with local saturation, in agreement with the scenario of CH_4 stratospheric injection from Neptunes warm south polar region; (iv) the H_(2)O stratospheric column is (2.1 ± 0.5) × 10^(14) cm^(-2) but its vertical distribution is still to be determined, so the H_(2)O external flux remains uncertain by over an order of magnitude; and (v) the CO stratospheric abundance is about twice the tropospheric value, confirming the dual origin of CO suspected from ground-based millimeter/submillimeter observations.


Astronomy and Astrophysics | 2010

Herschel/HIFI observations of Mars: first detection of O2 at submillimetre wavelengths and upper limits on HCl and H2O2

Paul Hartogh; C. Jarchow; E. Lellouch; M. de Val-Borro; Miriam Rengel; R. Moreno; Alexander S. Medvedev; Hideo Sagawa; B. M. Swinyard; T. Cavalié; D. C. Lis; M. I. Blecka; M. Banaszkiewicz; Dominique Bockelee-Morvan; Jacques Crovisier; T. Encrenaz; M. Küppers; L. M. Lara; S. Szutowicz; B. Vandenbussche; F. Bensch; Edwin A. Bergin; F. Billebaud; N. Biver; G. A. Blake; J. A. D. L. Blommaert; J. Cernicharo; Leen Decin; P. Encrenaz; Helmut Feuchtgruber

We report on an initial analysis of Herschel/HIFI observations of hydrogen chloride (HCl), hydrogen peroxide (H_2O_2), and molecular oxygen (O_2) in the Martian atmosphere performed on 13 and 16 April 2010 (L_s ~ 77°). We derived a constant volume mixing ratio of 1400 ± 120 ppm for O_2 and determined upper limits of 200 ppt for HCl and 2 ppb for H_2O_2. Radiative transfer model calculations indicate that the vertical profile of O_2 may not be constant. Photochemical models determine the lowest values of H_2O_2 to be around L_s ~ 75° but overestimate the volume mixing ratio compared to our measurements.


Astronomy and Astrophysics | 2010

HIFI observations of water in the atmosphere of comet C/2008 Q3 (Garradd)

Paul Hartogh; Jacques Crovisier; M. de Val-Borro; Dominique Bockelee-Morvan; N. Biver; Dariusz C. Lis; R. Moreno; C. Jarchow; Miriam Rengel; M. Emprechtinger; S. Szutowicz; M. Banaszkiewicz; F. Bensch; M. I. Blecka; T. Cavalié; Thérèse Encrenaz; Emmanuel Jehin; M. Küppers; L. M. Lara; E. Lellouch; B. M. Swinyard; B. Vandenbussche; Edwin A. Bergin; Geoffrey A. Blake; J. A. D. L. Blommaert; J. Cernicharo; Leen Decin; P. Encrenaz; T. de Graauw; Damien Hutsemekers

High-resolution far-infrared and sub-millimetre spectroscopy of water lines is an important tool to understand the physical and chemical properties of cometary atmospheres. We present observations of several rotational ortho- and para-water transitions in comet C/2008 Q3 (Garradd) performed with HIFI on Herschel. These observations have provided the first detection of the 2(12)-1(01) (1669 GHz) ortho and 1(11)-0(00) (1113 GHz) para transitions of water in a cometary spectrum. In addition, the ground-state transition 1(10)-1(01) at 557 GHz is detected and mapped. By detecting several water lines quasi-simultaneously and mapping their emission we can constrain the excitation parameters in the coma. Synthetic line profiles are computed using excitation models which include excitation by collisions, solar infrared radiation, and radiation trapping. We obtain the gas kinetic temperature, constrain the electron density profile, and estimate the coma expansion velocity by analyzing the map and line shapes. We derive water production rates of 1.7-2.8 x 10(28) s(-1) over the range r(h) = 1.83-1.85 AU.


Astronomy and Astrophysics | 2010

Water production in comet 81P/Wild 2 as determined by Herschel/HIFI

M. de Val-Borro; Paul Hartogh; Jacques Crovisier; Dominique Bockelee-Morvan; N. Biver; Dariusz C. Lis; R. Moreno; C. Jarchow; Miriam Rengel; S. Szutowicz; M. Banaszkiewicz; F. Bensch; M. I. Blecka; M. Emprechtinger; Thérèse Encrenaz; Emmanuel Jehin; M. Küppers; L. M. Lara; E. Lellouch; B. M. Swinyard; B. Vandenbussche; Edwin A. Bergin; Geoffrey A. Blake; J. A. D. L. Blommaert; J. Cernicharo; Leen Decin; P. Encrenaz; T. de Graauw; Damien Hutsemekers; M. Kidger

The high spectral resolution and sensitivity of Herschel/HIFI allows for the detection of multiple rotational water lines and accurate determinations of water production rates in comets. In this Letter we present HIFI observations of the fundamental 1_(10)–1_(01) (557 GHz) ortho and 1_(11)–0_(00) (1113 GHz) para rotational transitions of water in comet 81P/Wild 2 acquired in February 2010. We mapped the extent of the water line emission with five point scans. Line profiles are computed using excitation models which include excitation by collisions with electrons and neutrals and solar infrared radiation. We derive a mean water production rate of 1.0 × 10^(28) molecules s^(−1) at a heliocentric distance of 1.61 AU about 20 days before perihelion, in agreement with production rates measured from the ground using observations of the 18-cm OH lines. Furthermore, we constrain the electron density profile and gas kinetic temperature, and estimate the coma expansion velocity by fitting the water line shapes.


Astronomy and Astrophysics | 2010

A study of the distant activity of comet C/2006 W3 (Christensen) with Herschel and ground-based radio telescopes

Dominique Bockelee-Morvan; Paul Hartogh; Jacques Crovisier; B. Vandenbussche; B. M. Swinyard; N. Biver; D. C. Lis; C. Jarchow; R. Moreno; Damien Hutsemekers; Emmanuel Jehin; M. Küppers; L. M. Lara; E. Lellouch; Jean Manfroid; M. de Val-Borro; S. Szutowicz; M. Banaszkiewicz; F. Bensch; M. I. Blecka; M. Emprechtinger; Thérèse Encrenaz; T. Fulton; M. Kidger; M. Rengel; C. Waelkens; E. Bergin; Geoffrey A. Blake; J A D L Blommaert; J. Cernicharo

Comet C/2006 W3 (Christensen) was observed in November 2009 at 3.3 AU from the Sun with Herschel.The PACS instrument acquired images of the dust coma in 70-μm and 160-μm filters and spectra covering several H_2O rotational lines. Spectra in the range 450–1550 GHz were acquired with SPIRE. The comet emission continuum from 70 to 672 μm was measured, but no lines were detected. The spectral energy distribution indicates thermal emission from large particles and provides a measure of the size distribution index and dust production rate. The upper limit to the water production rate is compared to the production rates of other species (CO, CH_3OH, HCN, H_2S, OH) measured with the IRAM 30-m and Nancay telescopes. The coma is found to be strongly enriched in species more volatile than water, in comparison to comets observed closer to the Sun. The CO to H_2O production rate ratio exceeds 220%. The dust-to-gas production rate ratio is on the order of 1.


Astronomy and Astrophysics | 2012

Ammonia and other parent molecules in comet 10P/Tempel 2 from Herschel/HIFI and ground-based radio observations

N. Biver; Jacques Crovisier; Dominique Bockelee-Morvan; S. Szutowicz; D. C. Lis; Paul Hartogh; M. de Val-Borro; R. Moreno; J. Boissier; M. Kidger; M. Küppers; Gabriel Paubert; N. Dello Russo; Ronald Joe Vervack; Harold A. Weaver

The Jupiter-family comet 10P/Tempel 2 was observed during its 2010 return with the Herschel Space Observatory . We present here the observation of the JK (10‐00) transition of NH3 at 572 GHz in this comet with the Heterodyne Instrument for the Far Infrared (HIFI) of Herschel. We also report on radio observations of other molecules (HCN, CH3OH, H2S and CS) obtained during the 1999 return of the comet with the CSO telescope and the JCMT, and during its 2010 return with the IRAM 30-m telescope. Molecular abundances relative to water are 0.09%, 1.8%, 0.4%, and 0.08% for HCN, CH3OH, H2S, and CS, respectively. An abundance of 0.5% for NH3 is obtained, which is similar to the values measured in other comets. The hyperfine structure of the ammonia line is resolv ed for the first time in an astronomical source. Strong anisotro py in the outgassing is present in all observations from 1999 to 2010 and is modelled to derive the production rates.


Astronomy and Astrophysics | 2012

An upper limit for the water outgassing rate of the main-belt comet 176P/LINEAR observed with Herschel/HIFI

M. de Val-Borro; L. Rezac; Paul Hartogh; N. Biver; Dominique Bockelee-Morvan; Jacques Crovisier; M. Küppers; D. C. Lis; S. Szutowicz; Geoffrey A. Blake; M. Emprechtinger; C. Jarchow; Emmanuel Jehin; M. Kidger; L. M. Lara; Emmanuel Lellouch; R. Moreno; Miriam Rengel

176P/LINEAR is a member of the new cometary class known as main-belt comets (MBCs). It displayed cometary activity shortly during its 2005 perihelion passage, which may be driven by the sublimation of subsurface ices. We have therefore searched for emission of the H_(2)O 1_(10)–1_(01) ground state rotational line at 557 GHz toward 176P/LINEAR with the Heterodyne Instrument for the Far Infrared (HIFI) onboard the Herschel Space Observatory on UT 8.78 August 2011, about 40 days after its most recent perihelion passage, when the object was at a heliocentric distance of 2.58 AU. No H_(2)O line emission was detected in our observations, from which we derive sensitive 3-σ upper limits for the water production rate and column density of <4 × 10^(25) mol  s^(-1) and of <3 × 10^(10) cm^(-2), respectively. From the peak brightness measured during the object’s active period in 2005, this upper limit is lower than predicted by the relation between production rates and visual magnitudes observed for a sample of comets at this heliocentric distance. Thus, 176P/LINEAR was most likely less active at the time of our observation than during its previous perihelion passage. The retrieved upper limit is lower than most values derived for the H2O production rate from the spectroscopic search for CN emission in MBCs.

Collaboration


Dive into the S. Szutowicz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geoffrey A. Blake

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M. Kidger

European Space Agency

View shared research outputs
Top Co-Authors

Avatar

B. Vandenbussche

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

R. Moreno

Janssen Pharmaceutica

View shared research outputs
Researchain Logo
Decentralizing Knowledge