Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Torrecillas is active.

Publication


Featured researches published by S. Torrecillas.


Fish & Shellfish Immunology | 2010

Replacement of dietary fish oil by vegetable oils affects humoral immunity and expression of pro-inflammatory cytokines genes in gilthead sea bream Sparus aurata.

Daniel Montero; F. Mathlouthi; L. Tort; J.M. Afonso; S. Torrecillas; A. Fernández-Vaquero; D. Negrin; Marisol Izquierdo

Commercial gilthead sea bream feeds are highly energetic, fish oil traditionally being the main lipid source. But the decreased fish oil production together with the increased prices of this oil encourages its substitution by vegetable oils, imposing new nutritional habits to aquaculture species. Partial replacement of fish oil by vegetable oils in diets for marine species allows good feed utilization and growth but may affect fish health, since imbalances in dietary fatty acids may alter fish immunological status. The effect of dietary oils on different aspects of fish immune system has been reported for some species, but very little is known about the effect of dietary oils on immune-related genes expression in fish. Thus, the objective of this study was to elucidate the role of dietary oils on the expression of two pro-inflammatory cytokines, Tumor Necrosis Factor-α (TNF-α) and Interleukine 1β (IL-1β) on intestine and head kidney after exposure to the bacterial pathogen Photobacterium damselae sp. piscicida. For that purpose, 5 iso-nitrogenous and iso-lipidic diets (45% crude protein, 22% crude lipid content) were formulated. Anchovy oil was the only lipid source used in the control diet (FO), but in the other diets, fish oil was totally (100%) or partially (70%) substituted by linseed (rich in n-3 fatty acids) or soybean (rich in n-6 fatty acids) (100L, 100S, 70L, 70S). Fish were fed experimental diets during 80 days and after this period were exposed to an experimental intestinal infection with the pathogen. Serum and tissue samples were obtained at pre-infection and after 1, 3 and 7 days of infection. RNA was extracted and cDNA was synthesized by reverse transcription from intestine and head kidney and the level expression of TNF-α and IL-1β were assayed by using quantitative real time PCR. The expression level of genes analysed was represented as relative value, using the comparative Ct method (2(-ΔΔCt)). Serum anti-bacterial activity was measured as serum bactericidal capacity and lysozyme activity. Reduction of FO tends to reduce basal (pre-infection) genetic expression of both cytokines. However, complete FO replacement caused an over expression of both pro-inflammatory cytokines, particularly after 3 days of induced infection in fish fed soybean oil based diets. On the other hand, fish fed diets with low content of n-6 fatty acids showed better serum bactericidal capacity after infection, suggesting that the substitution of fish oil by vegetable oils containing high levels of n-6 fatty acids may induce imbalances on fish immune response, leading to a lower potential response against infections.


Fish & Shellfish Immunology | 2014

Improved health and growth of fish fed mannan oligosaccharides: Potential mode of action

S. Torrecillas; Daniel Montero; Marisol Izquierdo

Nowadays, aquaculture industry still confronts several disease-related problems mainly caused by viruses, bacteria and parasites. In the last decade, the use of mannan oligosaccharides (MOS) in fish production has received increased attention due to its beneficial effects on fish performance and disease resistance. This review shows the MOS use in aquaculture with a specific emphasis on the effectiveness of the several MOS forms available in the market related to disease resistance, fish nutrition and the possible mechanisms involved. Among the main beneficial effects attributed to MOS dietary supplementation, enhanced fish performance, feed efficiency and pathogen protection by potentiation of the systemic and local immune system and the reinforcement of the epithelial barrier structure and functionality are some of the most commonly demonstrated benefits. These combined effects suggest that the reinforcement of the intestinal integrity and functionality, together with the stimulation of the innate immune system, are the primary mode of action of MOS in fish. However, the supplementation strategy related to the structure of the MOS added, the correct dose and duration, as well as fish species, size and culture conditions are determinant factors to achieve improvements in health status and growth performance.


Fish & Shellfish Immunology | 2011

Reduced gut bacterial translocation in European sea bass (Dicentrarchus labrax) fed mannan oligosaccharides (MOS)

S. Torrecillas; A. Makol; Tibiábin Benítez-Santana; M.J. Caballero; Daniel Montero; John Sweetman; Marisol Izquierdo

The objective of this study was to determine the effect of mannan oligosaccharides derived from the outer cell wall of a select strain of Saccharomyces cerevisiae (Bio-Mos, Alltech Inc, USA) on mucus production, selected mucus immune parameters activity, gut morphology and in vivo and ex vivo gut bacterial translocation for European sea bass (Dicentrarchus labrax). Specimens were fed 4 g kg⁻¹ dietary MOS level of inclusion in a commercial sea bass diet for eight weeks. At the end of this period, anterior gut mucosal folds height, width and folds surface area were increased by MOS supplementation (P < 0.05, n = 240). Posterior gut presented shorter folds (P < 0.05, n = 240) but wider that those fed control diet (P < 0.05, n = 240) resulting in increased total surface area (P < 0.05, n = 240). For rectum, feeding MOS reduced fold length (P < 0.05, n = 240). Gut morphological analyses showed an enhancement in the number of cells secreting acid mucins by area unit, higher density of eosinophilic granulocytes (ECGs) in the mucosa for fish fed MOS together with an improvement in gut mucus lysozyme activity which could be related to the reduced in vivo and ex vivo gut bacterial translocation found. No differences were found for the skin mucus immune parameters evaluated.


Fish & Shellfish Immunology | 2013

Enhanced intestinal epithelial barrier health status on European sea bass (Dicentrarchus labrax) fed mannan oligosaccharides.

S. Torrecillas; A. Makol; Mónica Beatriz Betancor; Daniel Montero; M.J. Caballero; John Sweetman; Marisol Izquierdo

The study assesses the effects of dietary mannan oligosaccharides (MOS) in European sea bass (Dicentrarchus labrax) posterior intestinal lipid class composition and its possible relation to the potential prostaglandins production and Gut Associated Lymphoid Tissue (GALT) stimulation. Fish were fed 4 g kg(-1) MOS (Bio-Mos(®) Aquagrade, Alltech, Inc., USA) for eight weeks. Fish fed MOS presented higher (P ≤ 0.05) weight gain, total length, and specific and relative growth rates than fish fed the control diet. Stimulated posterior gut of fish fed MOS showed higher (P ≤ 0.05) prostaglandins production than fish fed the control diet. Lipid class analyses of posterior gut revealed a reduction (P ≤ 0.05) in the neutral lipid fraction in fish fed MOS compared to fish fed the control diet, particularly due to a reduction (P ≤ 0.05) in triacylglycerols content. The polar lipid fraction increased (P ≤ 0.05) in fish fed MOS compared to fish fed the control diet, mainly due to an increase (P ≤ 0.05) in phosphatidylethanolamine and phosphatidylcoline contents. Light microscopy of posterior gut revealed increased number or goblet cells as well as higher level of infiltrated eosinophilic granulocytes for fish fed MOS. Transmission electron microscopy qualitative observations revealed a better preserved cytoarchitecture of the intestinal epithelial barrier in the posterior gut of fish fed MOS. Posterior gut of fish fed MOS presented more densely packed non-damaged enterocytes, better preserved tight junctions structure, healthier and more organized microvilli, and a higher presence of infiltrated lymphocytes and granulocytes compared fish fed the control diet. The present study indicates that dietary MOS enhances European sea bass posterior gut epithelial defense by increasing membrane polar lipids content in relation to a stimulation of the eicosanoid cascade and GALT, promoting posterior gut health status.


Fish & Shellfish Immunology | 2015

Effects of dietary concentrated mannan oligosaccharides supplementation on growth, gut mucosal immune system and liver lipid metabolism of European sea bass (Dicentrarchus labrax) juveniles.

S. Torrecillas; Daniel Montero; M.J. Caballero; L. Robaina; M.J. Zamorano; John Sweetman; Marisol Izquierdo

The study assesses the effects of dietary concentrated mannan oligosaccharides (cMOS) on fish performance, biochemical composition, tissue fatty acid profiles, liver and posterior gut morphology and gen expression of selected parameters involved on the intestinal immune response and liver lipid metabolism of European sea bass (Dicentrarchus labrax). For that purpose, specimens of 20 g were fed during 8 weeks at 0 and 1.6 g kg(-1) dietary cMOS of inclusion in a commercial sea bass diet. Dietary cMOS enhanced fish length, specific and relative growth without affecting tissue proximate composition. However, cMOS supplementation altered especially liver and muscle fatty acid profiles by reducing levels of those fatty acids that are preferential substrates for β-oxidation in spite of a preferential retention of long chain polyunsaturated fatty acids (LC-PUFA), such as 20:4n-6 or 22:5n-6, in relation to the down-regulation of delta 6/5 desaturase gene expression found in liver. Besides, dietary cMOS supplementation reduced posterior gut intestinal folds width and induced changes on the gene expression level of certain immune-related genes mainly by down regulating transforming growth factor β (TGFβ) and up-regulating immunoglobulin (Ig), major histocompatibility complex class II (MHCII), T cell receptor β (TCRβ) and Caspase 3 (Casp-3). Thus, dietary cMOS inclusion at 0.16% promoted European sea bass specific growth rate and length, stimulated selected cellular GALT-associated parameters and affected lipid metabolism in muscle and liver pointing to a higher LC-PUFA accumulation and promoted β-oxidation.


British Journal of Nutrition | 2012

Increased Mauthner cell activity and escaping behaviour in seabream fed long-chain PUFA.

Tibiábin Benítez-Santana; Eduardo Juárez-Carrillo; Mónica Beatriz Betancor; S. Torrecillas; M.J. Caballero; María Soledad Izquierdo

There is limited information on the specific effects of long-chain PUFA (LCPUFA) on neuron development and functioning. Deficiency of those essential fatty acids impairs escape and avoidance behaviour in fish, where Mauthner cells (M-cells) play a particularly important role in initiating this response. Gilthead seabream larvae fed two different LCPUFA profiles were challenged with a sonorous stimulus. Feeding n-3 LCPUFA increased the content of these fatty acids in fish tissues and caused a higher number of larvae to react to the stimulus with a faster burst swimming speed response. This faster startle response in fish fed n-3 LCPUFA was also associated with an increased immune-positive neural response, particularly in M-cells, denoting a higher production of acetylcholine. The present study shows the first evidence of the effect of n-3 LCPUFA on the functioning of particular neurons in fish, the M-cells and the behaviour response that they modulate to escape from a sound stimulus.


Comparative Biochemistry and Physiology B | 2009

Effect of conjugated linoleic acid on dietary lipids utilization, liver morphology and selected immune parameters in sea bass juveniles (Dicentrarchus labrax)

A. Makol; S. Torrecillas; Agustín Fernández-Vaquero; L. Robaina; Daniel Montero; M.J. Caballero; Lluis Tort; Marisol Izquierdo

Increased energy content in fish feeds has led to an enhanced fat deposition, particularly in European sea bass, concerning fish farmers. Inclusion of conjugated linoleic acid (CLA) could reduce fat deposition as in other vertebrates. To determine if dietary CLA affects fat deposition, lipid metabolism, lipid composition and morphology of different tissues, growth and selected immune parameters, European sea bass juveniles were fed 4 graded levels of CLA (0, 0.5, 1 and 2%). Growth and feed conversion were not affected by CLA, whereas feed intake was reduced (P<0.05) by feeding 2% CLA. In these fish perivisceral fat was also reduced (P<0.05), particularly reducing (P<0.05) monounsaturated fatty acids. CLA has not affected tissue proximal composition, but reduced (P<0.05) saturated and monounsaturated fatty acids and increased (P<0.05) the n-3 and n-3 highly unsaturated fatty acids in muscle and increase (P<0.05) CLA content in muscle, liver and perivisceral fat. A progressive reduction in lipid vacuolization of hepatocytes cytoplasm and regular-shaped morphology was found in fish fed increased CLA levels, together with a progressive increase in malic enzyme activity (only significant in fish fed 1% CLA). Finally, inclusion of CLA up to 1% increased (P<0.05) plasma lysozyme activity and was positively correlated with alternative complement pathway.


Frontiers in Immunology | 2015

Dietary Mannan Oligosaccharides: Counteracting the Side Effects of Soybean Meal Oil Inclusion on European Sea Bass (Dicentrarchus labrax) Gut Health and Skin Mucosa Mucus Production?

S. Torrecillas; Daniel Montero; M.J. Caballero; Karin Pittman; Marco Custódio; Aurora Campo; John Sweetman; Marisol Izquierdo

The main objective of this study was to assess the effects of 4 g kg−1 dietary mannan oligosaccharides (MOS) inclusion in soybean oil (SBO)- and fish oil (FO)-based diets on the gut health and skin mucosa mucus production of European sea bass juveniles after 8 weeks of feeding. Dietary MOS, regardless of the oil source, promoted growth. The intestinal somatic index was not affected, however dietary SBO reduced the intestinal fold length, while dietary MOS increased it. The dietary oil source fed produced changes on the posterior intestine fatty acid profiles irrespective of MOS dietary supplementation. SBO down-regulated the gene expression of TCRβ, COX2, IL-1β, TNFα, IL-8, IL-6, IL-10, TGFβ, and Ig and up-regulated MHCII. MOS supplementation up-regulated the expression of MHCI, CD4, COX2, TNFα, and Ig when included in FO-based diets. However, there was a minor up-regulating effect on these genes when MOS was supplemented in the SBO-based diet. Both dietary oil sources and MOS affected mean mucous cell areas within the posterior gut, however the addition of MOS to a SBO diet increased the mucous cell size over the values shown in FO fed fish. Dietary SBO also trends to reduce mucous cell density in the anterior gut relative to FO, suggesting a lower overall mucosal secretion. There are no effects of dietary oil or MOS in the skin mucosal patterns. Complete replacement of FO by SBO, modified the gut fatty acid profile, altered posterior gut-associated immune system (GALT)-related gene expression and gut mucous cells patterns, induced shorter intestinal folds and tended to reduce European sea bass growth. However, when combined with MOS, the harmful effects of SBO appear to be partially balanced by moderating the down-regulation of certain GALT-related genes involved in the functioning of gut mucous barrier and increasing posterior gut mucous cell diffusion rates, thus helping to preserve immune homeostasis. This denotes the importance of a balanced dietary n–3/n–6 ratio for an appropriate GALT-immune response against MOS in European sea bass juveniles.


Fish & Shellfish Immunology | 2017

Disease resistance and response against Vibrio anguillarum intestinal infection in European seabass (Dicentrarchus labrax) fed low fish meal and fish oil diets

S. Torrecillas; M.J. Caballero; D. Mompel; Daniel Montero; M.J. Zamorano; L. Robaina; F. Rivero-Ramírez; V. Karalazos; S. Kaushik; Marisol Izquierdo

Abstract The aim of this study was to assess the effects of low levels of dietary fish meal (FM) and fish oil (FO) on disease resistance and gut associated lymphoid tissue (GALT) response after an experimental intestinal infection with V. anguillarum in European sea bass (Dicentrarchus labrax) For that purpose, sea bass juveniles were fed one of four diets containing combined levels of FO and FM as follows: 20%FM/6%FO, 20%FM/3%FO, 5%FM/6%FO and 5%FM/3%FO during 153 days. At the end of the feeding trial, fish were subjected to either an in vivo exposure to a sub‐lethal dose of V. anguillarum via anal inoculation or to an ex vivo exposure to V. anguillarum. Additionally, inducible nitric oxide synthase (iNOS) and tumor necrosis factor &agr; (TNF&agr;) gut patterns of immunopositivity were studied. Growth performance was affected by dietary FM level, however ex vivo gut bacterial translocation rates and survival after the in vivo challenge test were affected by dietary FO level. After 5 months of feeding, low dietary FM levels led to a posterior gut up‐regulation of interleukin‐1&bgr; (IL‐1&bgr;) and TNF&agr;, major histocompatibility complex‐II (MHCII) and cyclooxygenase‐2 (COX2), which in turn reduced the gut associated lymphoid tissue (GALT) capacity of response after 24 h post infection and conditioned European sea bass capacity to recover gut homeostasis 7 days post infection. Immunoreactivity to anti‐iNOS and anti‐TNF&agr; presented a gradient of increased immunopositivity towards the anus, regardless of the dietary FM/FO fed. Strong positive anti‐TNF&agr; isolated enterocytes were observed in the anterior gut in relation to low levels of dietary FM/FO. Submucosa and lamina propria immunoreactivity grade was related to the amount of leucocyte populations infiltrated and goblet cells presented immunopositivity to anti‐iNOS but not to anti‐TNF&agr;. Thus, reducing FO content from 6% to a 3% by VO in European sea bass diets increases ex vivo and in vivo gut bacterial translocation rates, whereas reducing FM content from 20% down to 5% up‐regulates the expression of several posterior gut inflammation‐related genes conditioning fish growth and GALT capacity of response after bacterial infection. HighlightsReducing dietary FO levels from 6% to a 3% increases ex vivo and in vivo gut bacterial translocation rates.Diminishing FM dietary content from 20% to 5% up‐regulates several posterior gut inflammation‐related genes.Decreasing FM dietary content of FM from 20% to 5% limits European sea bass growth performance.FM or FO dietary content did not influence gut iNOS and TNF&agr; immunolabelling along the gut.Strong positive anti‐TNF&agr; isolated epithelial cells similar to antigen‐sampling cells were observed particularly in anterior gut.


General and Comparative Endocrinology | 2017

Effects of thermal stress on the expression of glucocorticoid receptor complex linked genes in Senegalese sole (Solea senegalensis): Acute and adaptive stress responses

Vanessa Benítez-Dorta; M.J. Caballero; Monica Betancor; Manuel Manchado; Lluis Tort; S. Torrecillas; M.J. Zamorano; Marisol Izquierdo; Daniel Montero

The present study examined the short and mid-term effects of a rise in temperature from 18°C to 24°C on the expression of genes related to the stress response regulation in juveniles of Senegalese sole, Solea senegalensis. The animals were exposed to a temperature increase of 6°C, after 1month of acclimation at 18°C. After this process, samples of different tissues were collected from a total of 96 fish at four sampling points: 1h, 24h, 3days and 1week. The transcript levels of a set of genes involved in the stress response such as glucocorticoid receptors 1 and 2, corticotrophin-releasing factor, corticotrophin-releasing factor binding proteins, proopiomelanocortin A and B, and cellular stress defense (heat shock protein 70, 90AA and 90AB) were quantified at these sampling points. Additionally, blood samples were also taken to measure the circulating plasma cortisol concentration. Thermal stress induced by increasing temperature prompted an elevation of plasma cortisol levels in juvenile Senegalese sole after 1h as a short-term response, and a consecutive increase after one week, as a mid-term response. Senegalese sole seemed to respond positively in terms of adaptive mechanisms, with a rapid over-expression of grs and hsps in liver and brain, significantly higher after one hour post stress, denoting the fast and acute response of those tissues to a rapid change on temperature. The ratio hsp90/gr also increased 24h after thermal shock, ratio proposed to be an adaptive mechanism to prevent proteosomal degradation of GR. As a mid-term response, the elevation of brain crfbp gene expression one week after thermal shock could be an adaptive mechanism of negative feedback on HPI axis. Taken together, these data suggested an initial up-regulation of the glucocorticoid receptor complex linked genes in response to a temperature increase in Senegalese sole, with heat shock protein 90 potentially being a regulatory factor for the glucocorticoid receptor in the presence of cortisol.

Collaboration


Dive into the S. Torrecillas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge