S. V. Shchepetov
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. V. Shchepetov.
Plasma Physics and Controlled Fusion | 1998
G. M. Batanov; O I Fedianin; N. K. Kharchev; Yu V Kholnov; S. V. Shchepetov; Karen A. Sarksian; N. N. Skvortsova; C. Hidalgo; B. van Milligen; M. A. Pedrosa; J.A. Jiménez
The structure of fluctuations and turbulent transport have been investigated in the plasma boundary region of the L2-M stellarator. Normalized fluctuation levels are in the range (3-20)% and fluctuations are dominated by frequencies below 300 kHz. In the edge plasma region located inside the last closed magnetic flux surface the radial coherence of fluctuations is due to high-frequency fluctuations (>100 kHz). The poloidal coherence is dominated by low frequencies. Linear coupling of resistive interchange modes is considered a candidate to explain the existence of highly radially correlated fluctuations in the high-frequency range.
Plasma Physics Reports | 2013
G. S. Voronov; M. S. Berezhetskii; Yu. F. Bondar; I. Yu. Vafin; D. G. Vasil’kov; E. V. Voronova; S. E. Grebenshchikov; I. A. Grishina; N. F. Larionova; A. A. Letunov; V. P. Logvinenko; A. I. Meshcheryakov; E. I. Pleshkov; Yu. V. Khol’nov; O. I. Fedyanin; V. A. Tsygankov; S. V. Shchepetov; V. A. Kurnaev; I. V. Vizgalov; V. A. Urusov; I. A. Sorokin; F. S. Podolyako; A. Antipenkov; R. Pearce; L. Worth
Results are presented from L-2M stellarator experiments on testing a possible method for detection of water microleakages in the cooling system of the first wall and vacuum chamber of ITER. The method consists in the spectroscopic detection of spectral lines of the OH hydroxyl, which forms via the dissociation of water molecules in plasma. Emission in the spectral band of 305–310 nm can be detected even at water leakage rates less than 10−4 Pa m3/s. Chemical reactions between water and boron compounds on the vacuum chamber wall delay the detection of leakages up to ∼2000 s. A similar phenomenon can be expected when a leakage will occur in ITER, where the materials suggested for the first wall (Be, Li) can also chemically react with water.
Plasma Physics Reports | 2013
S. V. Shchepetov; Yu. V. Kholnov; D. G. Vasil’kov
In some cases, the phase shift between fluctuations of the electric potential and plasma density helps to identify the instability that governs the turbulent state. In this paper, the basic experimental and theoretical results that denote the possibility (or impossibility) of such identification are briefly discussed. The experimental data based on measurements of the phase shift between the floating potential and ion saturation current fluctuations in the L-2M stellarator—a system with externally imposed magnetic surfaces—are presented (Shchepetov, Kholnov, Fedyanin, et al., Plasma Phys. Controlled Fusion 50, 045001 (2008)). It is shown that the observed phase shift Ω varies in a wide range from π to 0, gradually decreasing with deepening inside the plasma. A number of arguments are presented suggesting that Ω ≈ π can indicate that the process is nonlocal, i.e., oscillations at a given spatial point are driven and mainly determined by the processes localized outside of the observation point. We note that, within the framework of the magnetohydrodynamic theory, plasma was definitely unstable with respect to resistive interchange modes in all cases under study. It is demonstrated experimentally that the widespread notion that the phase shift Ω ≈ π/2 is characteristic of only resistive interchange modes is hardly universal. The experimental results are analyzed on the basis of analytical estimates.
Plasma Physics Reports | 2008
D. K. Akulina; G. M. Batanov; M. S. Berezhetskiĭ; D. G. Vasil’kov; I. Yu. Vafin; G. S. Voronov; E. V. Voronova; G. A. Gladkov; S. E. Grebenshchikov; I. A. Grishina; A. V. Knyazev; L. M. Kovrizhnykh; L. V. Kolik; A. B. Kuznetsov; N. F. Larionova; A. A. Letunov; V. P. Logvinenko; N. I. Malykh; A. I. Meshcheryakov; Yu. I. Nechaev; A. E. Petrov; A. A. Pshenichnikov; V. V. Saenko; K. A. Sarksyan; N. N. Skvortsova; O. I. Fedyanin; N. K. Kharchev; Yu. V. Khol’nov; S. V. Shchepetov
Results are presented from experimental studies of variations in the plasma parameters during the excitation of a multiaxis magnetic configuration by the induction current (up to 17 kA) in the basic magnetic configuration of the L-2M stellarator in the regime of ECR heating at a microwave power of ∼200 kW (∼1 MW m−3) and an average plasma density of (1–2) × 1019 m−3. The current direction was chosen to reduce the net rotational transform (the so-called “negative“ current). The current was high enough for the rotational transform to change its sign inside the plasma column. Computer simulations of the L-2M magnetic structure showed that the surface with a zero rotational transform is topologically unstable and gives rise to magnetic islands, i.e., to a multiaxis magnetic configuration. Magnetic measurements showed that, at negative currents above 10 kA, intense bursts of MHD oscillations with a clearly defined toroidal mode number n = 0 were observed in the frequency range of several kilohertz. Unfortunately, the experimental data are insufficient to draw the final conclusion on the transverse structure of these oscillations. The radial temperature profiles along the stellarator major radius in the equatorial plane were studied. It is found that the electron temperature decreases by a factor of 1.3 in the plasma core (r/a ≤ 0.6) and that the temperature jump is retained near the boundary. A change in turbulent fluctuations of the plasma density during the excitation of a negative current was studied using wave scattering diagnostics. It is found that the probability density function of the increments of fluctuations in the plasma core differs from a Gaussian distribution. The measured distribution is heavy-tailed and broadens in the presence of the current. It is found that the spectrum of turbulent fluctuations and their Doppler shift near the plasma boundary are nonuniform in the radial direction. This may be attributed to the shear of the poloidal velocity. The experimental results indicate that the formation of regions with a zero rotational transform in the plasma core somewhat intensifies plasma transport.
Plasma Physics Reports | 2013
D. G. Vasil’kov; Yu. V. Kholnov; S. V. Shchepetov
Long-range spatial correlations in the turbulent plasma of the L-2M stellarator were revealed experimentally, and their relation to the geometry of magnetic surfaces was analyzed (Plasma Phys. Control. Fusion 50, 045001 (2008)). The operation modes of the facility in which fast transport transitions in plasma are possible were studied. Upon these transitions, the turbulence level is found to decrease substantially. It is shown that long-range spatial correlations are typical of relatively narrow frequency ranges. In particular, before a transport transition, such frequency ranges are f ∼ 30–40 kHz and f ∼ 1–3 kHz. After the transition, long-range spatial correlations in the frequency range of f ∼ 30–40 kHz disappear due to a significant decrease in the turbulence level in this frequency range. At the same time, correlations in the low frequency range are retained and new correlations at frequencies of f ∼ 6-12 kHz occur. It is found that global electromagnetic oscillations in the frequency range of f ∼ 1–3 kHz are related to the m/n = 0/0 perturbation and its toroidal satellites (here, m and n are the poloidal and toroidal mode numbers, respectively). It is also shown that, after the transport transition, a three-dimensional localized electromagnetic mode at the frequency of the geodesic acoustic mode governed by the average magnetic field curvature is excited. At higher frequencies typical of a geodesic acoustic mode related to the three-dimensional curvature of the magnetic field, no long-range spatial correlations were observed both before and after the transport transition.
Plasma Physics Reports | 2000
D. K. Akulina; G. M. Batanov; M. S. Berezhetskii; G. Gladkov; S. E. Grebenshchikov; I. S. Danilkin; L. M. Kovrizhnykh; L. V. Kolik; A. B. Kuznetsov; N. F. Larionova; K.M. Likin; N. I. Malykh; A. I. Meshcheryakov; A. E. Petrov; K. A. Sarksyan; I.S. Sbitnikova; N. N. Skvortsova; O. I. Fedyanin; N. K. Kharchev; Yu. V. Kholnov; S. V. Shchepetov
The influence of magnetic configurations with magnetic hills or wells on the parameters of a plasma column and turbulence characteristics were studied in experiments in which the plasma was created and heated by a microwave beam at the second harmonic of the electron cyclotron frequency. Calculations show that, for 〈β〉=(1.5−2)×10−, a configuration with a magnetic well takes place and the Mercier criterion for stability of the ideal MHD modes is satisfied. It is shown that the compensation of the Shafranov shift of the plasma column by a transverse (vertical) field (Bv/B0=5×10−3) leads to a configuration with a magnetic hill in which the Mercier stability criterion is violated in the central region of the plasma column. It is experimentally shown that the stored plasma energy in the magnetic-hill configuration is reduced by one-half in comparison with the magnetic-well configuration. In the case of a magnetic hill, the energy of fluctuations increases both in the plasma core and near the separatrix, and the quasi-regular components of the wavelet spectra grow. When the Shafranov shift is compensated only partially (Bv/B0∼3×10−3) and the system is near the instability threshold, the stored plasma energy and the central electron temperature are somewhat higher, and the radiation power of fast electrons from non-Maxwellian tails at the second harmonic of the electron gyrofrequency decreases. It is found that the wavelet spectra of fluctuations change, the coherence coefficient for spectral components increases, and the radial electric field near the separatrix decreases.
Nuclear Fusion | 1994
A. B. Kuznetsov; S. V. Shchepetov; D.Yu. Sychugov
The free boundary stellarator equilibria are studied in the framework of averaged equations. The structure of external magnetic fields created by currents flowing inside the plasma column is analysed. In all cases considered the dipole component of the magnetic field (in agreement with previous investigations) can only be used to determine the volume averaged value of the parameter beta if the net toroidal current is known. For zero net current operation it is shown that the quadrupole component of the external magnetic field can be used for an estimate of the plasma pressure distribution, for example, in the framework of a one parametric set of profiles. The dependence of the external magnetic field on the current distribution for the given pressure profile is also investigated, and it is shown that there is a possibility of distinguishing at least strongly different current distributions (such as the peaked and off-centred current profiles considered here) either for a large shear system at high beta or for a device with averaged vertical elongation of the vacuum magnetic surfaces
Jetp Letters | 2010
S. V. Shchepetov; Yu. V. Kholnov; D. G. Vasilkov
The interrelation between experimentally measured inward turbulent flux and lower order rational magnetic surfaces is demonstrated by the example of system with externally imposed magnetic surfaces—L-2M stellarator [Plasma Phys. Control. Fusion 50, 045001 (2008)]. In this note we show that average turbulent flux change sign from outward to inward in the vicinity of lower order rational magnetic surface located at plasma edge. There exists an upper threshold in plasma density for inward flux observation.
Plasma Physics Reports | 2007
O. I. Fedyanin; D. K. Akulina; G. M. Batanov; M. S. Berezhetskiĭ; D. G. Vasil’kov; I. Yu. Vafin; G. S. Voronov; E. V. Voronova; G. A. Gladkov; S. E. Grebenshchikov; L. M. Kovrizhnykh; N. F. Larionova; A. A. Letunov; V. P. Logvinenko; N. I. Malykh; A. I. Meshcheryakov; Yu. I. Nechaev; K. A. Sarksyan; N. N. Skvortsova; S. V. Shchepetov; N. K. Kharchev; Yu. V. Khol’nov
AbstractResults are presented from studies of the effect of the discharge parameters (in particular, plasma density and heating power) and the characteristics of the magnetic configuration (e.g., rotational transform) on the confinement of a low-pressure plasma during electron-cyclotron resonance heating in the L-2M stellarator. An analysis shows that the plasma energy in the steady-state phase of a discharge is fairly well described by the product of power functions of the plasma density, heating power, and rotational transform:
Plasma Physics and Controlled Fusion | 2001
S. V. Shchepetov; J.A. Jiménez; A B Kuznetsov