Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Van den Bosch is active.

Publication


Featured researches published by S. Van den Bosch.


Energy and Environmental Science | 2015

Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps

S. Van den Bosch; Wouter Schutyser; Ruben Vanholme; T. Driessen; S.-F. Koelewijn; Tom Renders; B. De Meester; Wouter J. J. Huijgen; Wim Dehaen; Christophe M. Courtin; Bert Lagrain; Wout Boerjan; Bert F. Sels

A catalytic lignocellulose biorefinery process is presented, valorizing both polysaccharide and lignin components into a handful of chemicals. To that end, birch sawdust is efficiently delignified through simultaneous solvolysis and catalytic hydrogenolysis in the presence of a Ru on carbon catalyst (Ru/C) in methanol under a H2 atmosphere at elevated temperature, resulting in a carbohydrate pulp and a lignin oil. The lignin oil yields above 50% of phenolic monomers (mainly 4-n-propylguaiacol and 4-n-propylsyringol) and about 20% of a set of phenolic dimers, relative to the original lignin content, next to phenolic oligomers. The structural features of the lignin monomers, dimers and oligomers were identified by a combination of GC/MS, GPC and 2D HSQC NMR techniques, showing interesting functionalities for forthcoming polymer applications. The effect of several key parameters like temperature, reaction time, wood particle size, reactor loading, catalyst reusability and the influence of solvent and gas were examined in view of the phenolic product yield, the degree of delignification and the sugar retention as a first assessment of the techno-economic feasibility of this biorefinery process. The separated carbohydrate pulp contains up to 92% of the initial polysaccharides, with a nearly quantitative retention of cellulose. Pulp valorization was demonstrated by its chemocatalytic conversion to sugar polyols, showing the multiple use of Ru/C, initially applied in the hydrogenolysis process. Various lignocellulosic substrates, including genetically modified lines of Arabidopsis thaliana, were finally processed in the hydrogenolytic biorefinery, indicating lignocellulose rich in syringyl-type lignin, as found in hardwoods, as the ideal feedstock for the production of chemicals.


Green Chemistry | 2015

Influence of bio-based solvents on the catalytic reductive fractionation of birch wood

Wouter Schutyser; S. Van den Bosch; Tom Renders; T. De Boe; S.-F. Koelewijn; A. Dewaele; Thijs Ennaert; O. Verkinderen; Bart Goderis; Christophe M. Courtin; Bert F. Sels

Reductive catalytic fractionation constitutes a promising approach to separate lignocellulose into a solid carbohydrate pulp and a stable liquid lignin oil. The process is able to extract and convert most of the lignin into soluble mono-, di- and oligomers, while retaining most of the carbohydrates in the pulp. This contribution studies the impact of the solvent choice on both pulp retention and delignification efficiency. Several bio-derivable solvents with varying properties were therefore tested in the Pd/C-catalyzed reductive liquid processing of birch wood. Though a high solvent polarity favors delignification, a too polar solvent like water causes significant solubilization of carbohydrates. A new empirical descriptor, denoted as ‘lignin-first delignification efficiency’ (LFDE), is introduced as a measure of efficient wood processing into soluble lignin derivatives and solid sugar pulp. Of all tested solvents, methanol and ethylene glycol showed the highest LFDE values, and these values could be increased by increasing both reaction time and temperature. Moreover, substantial differences regarding the process characteristics and analyzed product fractions between these two different solvents were discussed extensively. Most striking is the impact of the solvent on the pulp macrostructure, with methanol yielding a pulp composed of aggregated fiber cells, whereas the ethylene glycol pulp comprises nicely separated fiber cells.


Energy and Environmental Science | 2017

Lignin-first biomass fractionation: the advent of active stabilisation strategies

Tom Renders; S. Van den Bosch; S.-F. Koelewijn; W. Schutyser; Bert F. Sels

During the past decade, a growing scientific community is eagerly seeking for effective lignin valorisation approaches. Thought-out utilisation of the worlds most abundant resource of bio-aromatics could substantially augment the profitability of future lignocellulosic biorefineries. From a multitude of complementary valorisation opportunities (e.g., composite materials, dispersants, carbon fibres), harnessing lignin as renewable feedstock for chemicals forms an alluring challenge. However, a root cause that hampers its full exploitation, is an historically grown and deeply ingrained (mis)conception, stating that lignin is merely considered as a subordinate opportunity to derive some extra added-value, without being of primary concern. Unfortunately, this mind-set doesnt reckon with the fact that lignin is prone to irreversible degradation, leading to recalcitrant condensed structures which are difficult to disassemble into a handful of chemicals. In response, new biorefinery schemes are being developed, wherein the valorisation of lignin is regarded as one of the primary targets. At the heart of these alternative biorefineries are fractionation strategies that aim to prevent structural lignin degradation, hereby enabling an efficient and selective lignin-to-aromatic conversion. Of particular interest are fractionation methods that implement active stabilisation mechanisms that prohibit the problem of lignin condensation, without compromising the structural integrity of the carbohydrates. This new and emerging biorefinery paradigm is termed lignin-first, and includes two distinct strategies to actively prevent structural degradation during biomass fractionation, namely (i) tandem depolymerisation–stabilisation of native lignin, and (ii) active preservation of β-O-4 bonds.


Green Chemistry | 2017

Integrating lignin valorization and bio-ethanol production: on the role of Ni-Al2O3 catalyst pellets during lignin-first fractionation

S. Van den Bosch; Tom Renders; S. Kennis; S.-F. Koelewijn; G. Van den Bossche; Thijs Vangeel; Aron Deneyer; D. Depuydt; Christophe M. Courtin; Johan M. Thevelein; W. Schutyser; Bert F. Sels

Reductive catalytic fractionation (RCF) of lignocellulosic biomass is a promising lignin-first biorefinery strategy that yields nearly theoretical amounts of phenolic monomers by performing solvolytic delignification and lignin depolymerization in presence of a reducing catalyst, here Ni-Al2O3. This contribution attempts to elucidate the precise role of the catalyst, with respect to lignin solubilization, depolymerization and stabilization. The presented experiments unambiguously show that the solvent, under the applied conditions (methanol at 523 K), is largely responsible for both the initial release of lignin fragments from the lignocellulose matrix and their further depolymerization to shorter phenolics. The catalyst is merely responsible for the hydrogenation of reactive unsaturated side-chains in the solubilized lignin intermediates, leading to the formation of stable phenolic monomers and short oligomers. This catalytic reduction essentially prevents undesirable repolymerization reactions towards a condensed (high MW) lignin product. Since a solid–solid interaction between catalyst and wood is not required for the stabilization of soluble lignin products, the use of catalyst pellets (confined in a reactor basket) as a means to facilitate catalyst recuperation and clean pulp production, is justified. After optimizing the process with regard to mass transfer limitations, above 90% delignification of birch wood is achieved, producing a lignin oil that contains over 40% phenolic monomers, of which 70% consists of 4-n-propanolguaiacol and -syringol. In addition, multiple catalyst recycling experiments are successfully performed. Catalyst fouling is appointed as a primary cause of deactivation, though catalytic activity can be fully restored by thermal H2-treatment. Simple filtration of the reaction mixture finally affords a catalyst-free and delignified pulp, containing most of the initial cellulose and hemicellulose (93% glucose and 83% xylose retention). This pulp is converted into bio-ethanol, through simultaneous saccharification (accelerase trio enzyme mix) and fermentation (GSE16-T18-HAA1* yeast). A first and unprecedented trial led to a 73% bio-ethanol yield.


Green Chemistry | 2017

Sustainable bisphenols from renewable softwood lignin feedstock for polycarbonates and cyanate ester resins

S.-F. Koelewijn; S. Van den Bosch; Tom Renders; Wouter Schutyser; Bert Lagrain; Mario Smet; Joice Thomas; Wim Dehaen; P. Van Puyvelde; H. Witters; Bert F. Sels

The selective reductive catalytic depolymerisation of softwood lignin (e.g. pine, spruce) yields predominantly 4-n-propylguaiacol (4PG; 15–20 wt% on lignin basis), an interesting platform chemical for bio-based chemistry. This contribution specifically shows promising technical, sustainable and environmental advantages of such a bio-phenol for various polymer applications. The bisphenolic polymer precursor, 5,5′-methylenebis(4-n-propylguaiacol) (m,m′-BGF-4P), was therefore first synthesized by acid-catalysed condensation, and its synthesis and isolation are compared with shorter chain analogs, viz. 4-methyl- and 4-ethylguaiacol. A thorough GC-GPC/SEC analysis of the crude condensation mixture was developed to assess the purity of the isolated dimers. Isolation is done by a single-step crystallization, yielding 57 wt% of m,m′-BGF-4P in >99% purity. This pure m,m′-BGF-4P bisphenol displays a notably reduced potency to activate human estrogen receptor alpha (hERα; EC50 at 10−5 M) in comparison with commercial bisphenols, and is therefore useful for future polymer applications. As a proof of concept, polycarbonates and cyanate ester resins were prepared from m,m′-BGF-4P and compared to other bisphenols. The polycarbonate had Mn = 5182 g mol−1, Tg = 99 °C, Tm = 213 °C, Td,5% = 360 °C, and displayed improved processability in common solvents, as opposed to the methylated and ethylated bisguaiacols. A fully cured resin disk exhibited a Tg = 193 °C, Td,5% = 389 °C and a water uptake of only 1.18% after being immersed in 85 °C water for four days. These results underscore the potential of the intrinsic functionality of lignin-derived building blocks to transcend the scope of renewability.


Green Chemistry | 2018

Promising bulk production of a potentially benign bisphenol A replacement from a hardwood lignin platform

S.-F. Koelewijn; C. Cooreman; Tom Renders; C. Andecochea Saiz; S. Van den Bosch; Wouter Schutyser; W. De Leger; Mario Smet; P. Van Puyvelde; H. Witters; B. Van der Bruggen; Bert F. Sels

A full lignin-to-chemicals valorisation chain – from hardwood over bissyringols to aromatic polyesters (APEs) – is established for renewable 4-n-propylsyringol (PS), the main product from catalytic hydrogenolysis of (native) hardwood lignin. To do so, reagent-grade PS was produced from birch wood via reductive catalytic fractionation (RCF) and isolated in 34 wt% yield on lignin basis. Additional early-stage theoretical calculations, based on both relative volatility (α) and distillation resistance (Ω) as well as Aspen Plus® simulations, predict that the isolation of PS by means of distillation is economically feasible at industrial scales (


Archive | 1996

Soil litter dynamics and N cycling in alley cropping systems

Bernard Vanlauwe; S. Van den Bosch; M Van Gestel; Roel Merckx

85–95 per ton of propylphenolics at 200–400 kt a−1 scale). Subsequent stoichiometric acid-catalysed condensation with formaldehyde unveils a remarkably high 92 wt% selectivity towards the dimer 3,3′-methylenebis(4-n-propylsyringol) (m,m′-BSF-4P), which is isolated in >99% purity by facile single-step crystallisation. The striking dimer selectivity is ascribed to the synergetic interplay between the activating methoxy groups and the oligomerisation-inhibiting propyl chain. Next, an in vitro human oestrogen receptor α (hERα) assay was performed to ensure safe(r) chemical design. The bissyringyl scaffold displays reduced potency (∼19–45-times lower affinity than bisphenol A) and lower efficacy (∼36–45% of BPAs maximum activity). Lastly, to assess the functionality of the safe(r) bissyringol scaffold, it was converted into an APE. The APE displays a Mw = 43.0 kDa, Mn = 24.4 kDa, Tg = 157 °C and Td,5% = 345 °C. In short, (i) the feasibility and scalability of the feedstock, (ii) the simplified process conditions, (iii) the reduced in vitro oestrogenicity, and (iv) the functionality towards polymerisation, make this bissyringol a renewable and potentially benign bisphenol replacement, capable for production at bulk scale.


Topics in Current Chemistry | 2018

Catalytic Strategies Towards Lignin-Derived Chemicals

S. Van den Bosch; S.-F. Koelewijn; Tom Renders; G. Van den Bossche; Thijs Vangeel; Wouter Schutyser; Bert F. Sels

Many tropical alley cropping systems rely on an efficient transfer of nitrogen from organic residues to food crops. Several reports indicate that N released from decomposing residues is poorly recovered by food crops. This has been ascribed to a bad synchronization between supply and demand of nutrients, and to a temporarily immobilization of N not taken up by the crop. To improve the N use efficiency by the accompanying crop in alley cropping systems, a better understanding of the processes involved is required. Here, we report on two studies carried out to trace the fate of N in such systems.


Green Chemistry | 2018

Catalytic lignocellulose biorefining in n-butanol/water: a one-pot approach toward phenolics, polyols, and cellulose

Tom Renders; E. Cooreman; S. Van den Bosch; Wouter Schutyser; S.-F. Koelewijn; Thijs Vangeel; Aron Deneyer; G. Van den Bossche; Christophe M. Courtin; Bert F. Sels

Lignin valorization represents a crucial, yet underexploited component in current lignocellulosic biorefineries. An alluring opportunity is the selective depolymerization of lignin towards chemicals. Although challenged by lignin’s recalcitrant nature, several successful (catalytic) strategies have emerged. This review provides an overview of different approaches to cope with detrimental lignin structural alterations at an early stage of the biorefinery process, thus enabling effective routes towards lignin-derived chemicals. A first general strategy is to isolate lignin with a better preserved native-like structure and therefore an increased amenability towards depolymerization in a subsequent step. Both mild process conditions as well as active stabilization methods will be discussed. An alternative is the simultaneous depolymerization-stabilization of native lignin towards stable lignin monomers. This approach requires a fast and efficient stabilization of reactive lignin intermediates in order to minimize lignin repolymerization and maximize the envisioned production of chemicals. Finally, the obtained lignin-derived compounds can serve as a platform towards a broad range of bio-based products. Their implementation will improve the sustainability of the chemical industry, but equally important will generate opportunities towards product innovations based on unique biobased chemical structures.


Chemical Communications | 2015

Tuning the lignin oil OH-content with Ru and Pd catalysts during lignin hydrogenolysis on birch wood

S. Van den Bosch; Wouter Schutyser; S.-F. Koelewijn; Tom Renders; Christophe M. Courtin; Bert F. Sels

Lignocellulose constitutes an alluring renewable feedstock for the production of bio-based chemicals. In this contribution, we propose a chemocatalytic biorefinery concept that aims to convert lignocellulosic biomass (Eucalyptus sawdust) into (i) lignin-derived (mono)phenolics, (ii) hemicellulose-derived polyols, and (iii) a cellulose pulp. This is achieved by processing biomass in an equivolumetric mixture of n-butanol and water at elevated temperature (200 °C), in the presence of Ru/C and pressurised hydrogen (30 bar). During this one-pot Reductive Catalytic Fractionation (RCF) process, the hot liquor enables the extraction and solvolytic depolymerisation of both lignin and hemicellulose, while the catalyst and reductive environment are essential to hydrogenate reactive intermediates (coniferyl/sinapyl alcohol and sugars) toward stable target products (phenolics and polyols, respectively). After the catalytic reaction, the solid carbohydrate pulp (mainly cellulose) is easily retrieved upon filtration. Phase separation of n-butanol and water occurs upon cooling the liquor (<125 °C), which offers a facile and effective strategy to isolate lignin-derived phenolics (n-butanol phase) from polyols (aqueous phase). The three resulting product streams provide a versatile platform for down-stream conversion, en route to bio-based chemicals. A proof-of-concept experiment using a 2 L batch reactor demonstrates the scalability potential. Furthermore, this contribution highlights that the conversion of each biopolymer is influenced in a different way by reaction parameters like catalyst, hydrogen pressure, temperature, and acidity (HCl). The key challenge is to find suitable conditions that allow (close-to-)optimal valorisation of all constituents.

Collaboration


Dive into the S. Van den Bosch's collaboration.

Top Co-Authors

Avatar

Bert F. Sels

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

S.-F. Koelewijn

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Tom Renders

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Wouter Schutyser

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Christophe M. Courtin

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

G. Van den Bossche

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Thijs Vangeel

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

W. Schutyser

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Aron Deneyer

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Bert Lagrain

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge