S. Vincent
University of Utah
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. Vincent.
Science | 2011
E. Aliu; T. Arlen; T. Aune; M. Beilicke; W. Benbow; A. Bouvier; S. M. Bradbury; J. H. Buckley; V. Bugaev; K. L. Byrum; A. Cannon; A. Cesarini; J. L. Christiansen; L. Ciupik; E. Collins-Hughes; M. P. Connolly; W. Cui; R. Dickherber; C. Duke; M. Errando; A. Falcone; J. P. Finley; G. Finnegan; L. Fortson; A. Furniss; N. Galante; D. Gall; K. Gibbs; G. H. Gillanders; S. Godambe
This detection constrains the mechanism and emission region of gamma-ray radiation in the pulsar’s magnetosphere. We report the detection of pulsed gamma rays from the Crab pulsar at energies above 100 giga–electron volts (GeV) with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) array of atmospheric Cherenkov telescopes. The detection cannot be explained on the basis of current pulsar models. The photon spectrum of pulsed emission between 100 mega–electron volts and 400 GeV is described by a broken power law that is statistically preferred over a power law with an exponential cutoff. It is unlikely that the observation can be explained by invoking curvature radiation as the origin of the observed gamma rays above 100 GeV. Our findings require that these gamma rays be produced more than 10 stellar radii from the neutron star.
The Astrophysical Journal | 2009
V. A. Acciari; E. Aliu; T. Arlen; T. Aune; M. Bautista; M. Beilicke; W. Benbow; S. M. Bradbury; J. H. Buckley; V. Bugaev; Yousaf M. Butt; K. L. Byrum; A. Cannon; Ö. Çelik; A. Cesarini; Y. C. Chow; L. Ciupik; P. Cogan; P. Colin; W. Cui; M. K. Daniel; R. Dickherber; C. Duke; Vikram V. Dwarkadas; T. Ergin; S. J. Fegan; J. P. Finley; G. Finnegan; P. Fortin; L. Fortson
We present evidence that the very-high-energy (VHE, E > 100 GeV) gamma-ray emission coincident with the supernova remnant IC 443 is extended. IC 443 contains one of the best-studied sites of supernova remnant/molecular cloud interaction and the pulsar wind nebula CXOU J061705.3+222127, both of which are important targets for VHE observations. VERITAS observed IC 443 for 37.9 hours during 2007 and detected emission above 300 GeV with an excess of 247 events, resulting in a significance of 8.3 standard deviations (sigma) before trials and 7.5 sigma after trials in a point-source search. The emission is centered at 06 16 51 +22 30 11 (J2000) +- 0.03_stat +- 0.08_sys degrees, with an intrinsic extension of 0.16 +- 0.03_stat +- 0.04_sys degrees. The VHE spectrum is well fit by a power law (dN/dE = N_0 * (E/TeV)^-Gamma) with a photon index of 2.99 +- 0.38_stat +- 0.3_sys and an integral flux above 300 GeV of (4.63 +- 0.90_stat +- 0.93_sys) * 10^-12 cm^-2 s^-1. These results are discussed in the context of existing models for gamma-ray production in IC 443.
Physical Review D | 2012
E. Aliu; S. Archambault; T. Arlen; T. Aune; M. Beilicke; W. Benbow; A. Bouvier; S. M. Bradbury; J. H. Buckley; V. Bugaev; K. L. Byrum; A. Cannon; A. Cesarini; J. L. Christiansen; L. Ciupik; E. Collins-Hughes; M. P. Connolly; W. Cui; G. Decerprit; R. Dickherber; J. Dumm; M. Errando; A. Falcone; Q. Feng; Francesc Ferrer; J. P. Finley; G. Finnegan; L. Fortson; A. Furniss; N. Galante
The VERITAS array of Cherenkov telescopes has carried out a deep observational program on the nearby dwarf spheroidal galaxy Segue 1. We report on the results of nearly 48 hours of good quality selected data, taken between January 2010 and May 2011. No significant γ-ray emission is detected at the nominal position of Segue 1, and upper limits on the integrated flux are derived. According to recent studies, Segue 1 is the most dark matter-dominated dwarf spheroidal galaxy currently known. We derive stringent bounds on various annihilating and decaying dark matter particle models. The upper limits on the velocity-weighted annihilation cross-section are ⟨σv⟩95% CL≲10−23 cm3 s−1, improving our limits from previous observations of dwarf spheroidal galaxies by at least a factor of 2 for dark matter particle masses mχ≳300 GeV. The lower limits on the decay lifetime are at the level of τ95% CL≳1024 s. Finally, we address the interpretation of the cosmic ray lepton anomalies measured by ATIC and PAMELA in terms of dark matter annihilation, and show that the VERITAS observations of Segue 1 disfavor such a scenario.
The Astrophysical Journal | 2010
V. A. Acciari; T. Arlen; T. Aune; M. Beilicke; W. Benbow; D. Boltuch; S. M. Bradbury; J. H. Buckley; V. Bugaev; K. L. Byrum; A. Cannon; A. Cesarini; J. L. Christiansen; L. Ciupik; W. Cui; R. Dickherber; C. Duke; J. P. Finley; G. Finnegan; A. Furniss; N. Galante; S. Godambe; J. Grube; R. Guenette; G. Gyuk; D. Hanna; J. Holder; C. M. Hui; T. B. Humensky; A. Imran
Indirect dark matter searches with ground-based gamma-ray observatories provide an alternative for identifying the particle nature of dark matter that is complementary to that of direct search or accelerator production experiments. We present the results of observations of the dwarf spheroidal galaxies Draco, Ursa Minor, Bo¨ 1, and Willman 1 conducted by the Very Energetic Radiation Imaging Telescope Array System (VERITAS). These galaxies are nearby dark matter dominated objects located at a typical distance of several tens of kiloparsecs for which there are good measurements of the dark matter density profile from stellar velocity measurements. Since the conventional astrophysical background of very high energy gamma rays from these objects appears to be negligible, they are good targets to search for the secondary gamma-ray photons produced by interacting or decaying dark matter particles. No significant gamma-ray flux above 200 GeV was detected from these four dwarf galaxies for a typical exposure of ∼20 hr. The 95% confidence upper limits on the integral gamma-ray flux are in the range (0.4–2.2) × 10 −12 photons cm −2 s −1 . We interpret this limiting flux in the context of pair annihilation of weakly interacting massive particles (WIMPs) and derive constraints on the thermally averaged product of the total self-annihilation cross section and the relative velocity of the WIMPs (� σv � 10 −23 cm 3 s −1 for mχ 300 GeVc −2 ). This limit is obtained under conservative assumptions regarding the dark matter distribution in dwarf galaxies and is approximately 3 orders of magnitude above the generic theoretical prediction for WIMPs in the minimal supersymmetric standard model framework. However, significant uncertainty exists in the dark matter distribution as well as the neutralino cross sections which under favorable assumptions could further lower this limit.
The Astrophysical Journal | 2010
V. A. Acciari; E. Aliu; T. Arlen; T. Aune; M. Bautista; M. Beilicke; W. Benbow; D. Boltuch; S. M. Bradbury; J. H. Buckley; V. Bugaev; Yousaf M. Butt; K. L. Byrum; A. Cannon; A. Cesarini; Y. C. Chow; L. Ciupik; P. Cogan; W. Cui; R. Dickherber; C. Duke; T. Ergin; S. J. Fegan; J. P. Finley; G. Finnegan; P. Fortin; L. Fortson; A. Furniss; N. Galante; D. Gall
We report on observations of very high energy γ rays from the shell-type supernova remnant (SNR) Cassiopeia A with the Very Energetic Radiation Imaging Telescope Array System stereoscopic array of four imaging atmospheric Cherenkov telescopes in Arizona. The total exposure time for these observations is 22 hr, accumulated between September and November of 2007. The γ-ray source associated with the SNR Cassiopeia A was detected above 200 GeV with a statistical significance of 8.3σ. The estimated integral flux for this γ-ray source is about 3% of the Crab-Nebula flux. The photon spectrum is compatible with a power law dN/dE E –Γ with an index Γ = 2.61 ± 0.24stat ± 0.2sys. The data are consistent with a point-like source. We provide a detailed description of the analysis results and discuss physical mechanisms that may be responsible for the observed γ-ray emission.
The Astrophysical Journal | 2013
T. Arlen; T. Aune; M. Beilicke; W. Benbow; A. Bouvier; J. H. Buckley; V. Bugaev; A. Cesarini; L. Ciupik; M. P. Connolly; W. Cui; R. Dickherber; J. Dumm; M. Errando; A. Falcone; S. Federici; Q. Feng; J. P. Finley; G. Finnegan; L. Fortson; A. Furniss; N. Galante; D. Gall; S. Griffin; J. Grube; G. Gyuk; D. Hanna; J. Holder; T. B. Humensky; P. Kaaret
We report on the detection of a very rapid TeV gamma-ray flare from BL Lacertae on 2011 June 28 with the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The flaring activity was observed during a 34.6 minute exposure, when the integral flux above 200 GeV reached (3.4 ± 0.6) × 10–6 photons m–2 s–1, roughly 125% of the Crab Nebula flux measured by VERITAS. The light curve indicates that the observations missed the rising phase of the flare but covered a significant portion of the decaying phase. The exponential decay time was determined to be 13 ± 4 minutes, making it one of the most rapid gamma-ray flares seen from a TeV blazar. The gamma-ray spectrum of BL Lacertae during the flare was soft, with a photon index of 3.6 ± 0.4, which is in agreement with the measurement made previously by MAGIC in a lower flaring state. Contemporaneous radio observations of the source with the Very Long Baseline Array revealed the emergence of a new, superluminal component from the core around the time of the TeV gamma-ray flare, accompanied by changes in the optical polarization angle. Changes in flux also appear to have occurred at optical, UV, and GeV gamma-ray wavelengths at the time of the flare, although they are difficult to quantify precisely due to sparse coverage. A strong flare was seen at radio wavelengths roughly four months later, which might be related to the gamma-ray flaring activities. We discuss the implications of these multiwavelength results.
The Astrophysical Journal | 2009
V. A. Acciari; E. Aliu; T. Arlen; M. Beilicke; W. Benbow; D. Boltuch; S. M. Bradbury; J. H. Buckley; V. Bugaev; K. L. Byrum; A. Cannon; A. Cesarini; Y. C. Chow; L. Ciupik; P. Cogan; R. Dickherber; C. Duke; T. Ergin; A. Falcone; S. J. Fegan; J. P. Finley; G. Finnegan; P. Fortin; L. Fortson; A. Furniss; K. Gibbs; G. H. Gillanders; J. Grube; R. Guenette; G. Gyuk
HESS J0632+057 is one of only two unidentified very-high-energy gamma-ray sources which appear to be point-like within experimental resolution. It is possibly associated with the massive Be star MWC 148 and has been suggested to resemble known TeV binary systems like LS I +61 303 or LS 5039. HESS J0632+057 was observed by VERITAS for 31 hr in 2006, 2008, and 2009. During these observations, no significant signal in gamma rays with energies above 1?TeV was detected from the direction of HESS J0632+057. A flux upper limit corresponding to 1.1% of the flux of the Crab Nebula has been derived from the VERITAS data. The nondetection by VERITAS excludes with a probability of 99.993% that HESS J0632+057 is a steady gamma-ray emitter. Contemporaneous X-ray observations with the Swift X-Ray Telescope reveal a factor of 1.8 ? 0.4 higher flux in the 1-10?keV range than earlier X-ray observations of HESS J0632+057. The variability in the gamma-ray and X-ray fluxes supports interpretation of the object as a gamma-ray emitting binary.
The Astrophysical Journal | 2010
V. A. Acciari; E. Aliu; M. Beilicke; W. Benbow; D. Boltuch; M. Böttcher; S. M. Bradbury; V. Bugaev; K. L. Byrum; A. Cesarini; L. Ciupik; P. Cogan; W. Cui; R. Dickherber; C. Duke; A. Falcone; J. P. Finley; G. Finnegan; L. Fortson; A. Furniss; N. Galante; D. Gall; K. Gibbs; R. Guenette; G. H. Gillanders; S. Godambe; J. Grube; D. Hanna; C. M. Hui; T. B. Humensky
We present results from an intensive VERITAS monitoring campaign of the high-frequency peaked BL Lac object 1ES 1218+304 in 2008/2009. Although 1ES 1218+304 was detected previously by MAGIC and VERITAS at a persistent level of ~6% of the Crab Nebula flux, the new VERITAS data reveal a prominent flare reaching ~20% of the Crab. While very high energy (VHE) flares are quite common in many nearby blazars, the case of 1ES 1218+304 (redshift z = 0.182) is particularly interesting since it belongs to a group of blazars that exhibit unusually hard VHE spectra considering their redshifts. When correcting the measured spectra for absorption by the extragalactic background light, 1ES 1218+304 and a number of other blazars are found to have differential photon indices Γ≤ 1.5. The difficulty in modeling these hard spectral energy distributions in blazar jets has led to a range of theoretical γ-ray emission scenarios, one of which is strongly constrained by these new VERITAS observations. We consider the implications of the observed light curve of 1ES 1218+304, which shows day scale flux variations, for shock acceleration scenarios in relativistic jets, and in particular for the viability of kiloparsec-scale jet emission scenarios.
The Astrophysical Journal | 2011
V. A. Acciari; E. Aliu; T. Arlen; T. Aune; M. Beilicke; W. Benbow; S. M. Bradbury; J. H. Buckley; V. Bugaev; K. L. Byrum; A. Cannon; A. Cesarini; J. L. Christiansen; L. Ciupik; E. Collins-Hughes; M. P. Connolly; W. Cui; C. Duke; M. Errando; A. Falcone; J. P. Finley; G. Finnegan; L. Fortson; A. Furniss; N. Galante; D. Gall; S. Godambe; S. Griffin; J. Grube; R. Guenette
We present the results of 16 Swift-triggered Gamma-ray burst (GRB) follow-up observations taken with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) telescope array from 2007 January to 2009 June. The median energy threshold and response time of these observations were 260 GeV and 320 s, respectively. Observations had an average duration of 90 minutes. Each burst is analyzed independently in two modes: over the whole duration of the observations and again over a shorter timescale determined by the maximum VERITAS sensitivity to a burst with a t –1.5 time profile. This temporal model is characteristic of GRB afterglows with high-energy, long-lived emission that have been detected by the Large Area Telescope on board the Fermi satellite. No significant very high energy (VHE) gamma-ray emission was detected and upper limits above the VERITAS threshold energy are calculated. The VERITAS upper limits are corrected for gamma-ray extinction by the extragalactic background light and interpreted in the context of the keV emission detected by Swift. For some bursts the VHE emission must have less power than the keV emission, placing constraints on inverse Compton models of VHE emission.
The Astrophysical Journal | 2014
E. Aliu; T. Aune; B. Behera; M. Beilicke; W. Benbow; K. Berger; R. Bird; A. Bouvier; J. H. Buckley; V. Bugaev; M. Cerruti; X. Chen; L. Ciupik; M. P. Connolly; W. Cui; J. Dumm; Vikram V. Dwarkadas; M. Errando; A. Falcone; S. Federici; Q. Feng; J. P. Finley; H. Fleischhack; P. Fortin; L. Fortson; A. Furniss; N. Galante; G. H. Gillanders; E. V. Gotthelf; S. Griffin
We present very high energy (VHE) imaging of MGRO J2019+37 obtained with the VERITAS observatory. The bright extended (~2°) unidentified Milagro source is located toward the rich star formation region Cygnus-X. MGRO J2019+37 is resolved into two VERITAS sources. The faint, point-like source VER J2016+371 overlaps CTB 87, a filled-center remnant (SNR) with no evidence of a supernova remnant shell at the present time. Its spectrum is well fit in the 0.65-10 TeV energy range by a power-law model with photon index 2.3 ± 0.4. VER J2019+378 is a bright extended (~1°) source that likely accounts for the bulk of the Milagro emission and is notably coincident with PSR J2021+3651 and the star formation region Sh 2–104. Its spectrum in the range 1-30 TeV is well fit with a power-law model of photon index 1.75 ± 0.3, among the hardest values measured in the VHE band, comparable to that observed near Vela-X. We explore the unusual spectrum and morphology in the radio and X-ray bands to constrain possible emission mechanisms for this source.