S. Vinit
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. Vinit.
Annals of the New York Academy of Sciences | 2010
Erica A. Dale-Nagle; Michael S. Hoffman; P.M. MacFarlane; Irawan Satriotomo; Mary Rachael Lovett-Barr; S. Vinit; Gordon S. Mitchell
Plasticity is a fundamental property of the neural system controlling breathing. One frequently studied model of respiratory plasticity is long‐term facilitation of phrenic motor output (pLTF) following acute intermittent hypoxia (AIH). pLTF arises from spinal plasticity, increasing respiratory motor output through a mechanism that requires new synthesis of brain‐derived neurotrophic factor, activation of its high‐affinity receptor, tropomyosin‐related kinase B, and extracellular‐related kinase mitogen‐activated protein kinase signaling in or near phrenic motor neurons. Because intermittent hypoxia induces spinal plasticity, we are exploring the potential to harness repetitive AIH as a means of inducing functional recovery in conditions causing respiratory insufficiency, such as cervical spinal injury. Because repetitive AIH induces phenotypic plasticity in respiratory motor neurons, it may restore respiratory motor function in patients with incomplete spinal injury.
Respiratory Physiology & Neurobiology | 2009
S. Vinit; Mary Rachael Lovett-Barr; Gordon S. Mitchell
Respiratory-related complications are the leading cause of death in spinal cord injury (SCI) patients. Few effective SCI treatments are available after therapeutic interventions are performed in the period shortly after injury (e.g. spine stabilization and prevention of further spinal damage). In this review we explore the capacity to harness endogenous spinal plasticity induced by intermittent hypoxia to optimize function of surviving (spared) neural pathways associated with breathing. Two primary questions are addressed: (1) does intermittent hypoxia induce plasticity in spinal synaptic pathways to respiratory motor neurons following experimental SCI? and (2) can this plasticity improve respiratory function? In normal rats, intermittent hypoxia induces serotonin-dependent plasticity in spinal pathways to respiratory motor neurons. Early experiments suggest that intermittent hypoxia also enhances respiratory motor output in experimental models of cervical SCI (cervical hemisection) and that the capacity to induce functional recovery is greater with longer durations post-injury. Available evidence suggests that intermittent hypoxia-induced spinal plasticity has considerable therapeutic potential to treat respiratory insufficiency following chronic cervical spinal injury.
Neuroscience | 2011
P.M. MacFarlane; S. Vinit; Gordon S. Mitchell
Acute intermittent hypoxia (AIH) facilitates phrenic motor output by a mechanism that requires spinal serotonin (type 2) receptor activation, NADPH oxidase activity and formation of reactive oxygen species (ROS). Episodic spinal serotonin (5-HT) receptor activation alone, without changes in oxygenation, is sufficient to elicit NADPH oxidase-dependent phrenic motor facilitation (pMF). Here we investigated: (1) whether serotonin 2A and/or 2B (5-HT2A/B) receptors are expressed in identified phrenic motor neurons, and (2) which receptor subtype is capable of eliciting NADPH-oxidase-dependent pMF. In anesthetized, artificially ventilated adult rats, episodic C4 intrathecal injections (3×6 μl injections, 5 min intervals) of a 5-HT2A (DOI) or 5-HT2B (BW723C86) receptor agonist elicited progressive and sustained increases in integrated phrenic nerve burst amplitude (i.e. pMF), an effect lasting at least 90 min post-injection for both receptor subtypes. 5-HT2A and 5-HT2B receptor agonist-induced pMF were both blocked by selective antagonists (ketanserin and SB206553, respectively), but not by antagonists to the other receptor subtype. Single injections of either agonist failed to elicit pMF, demonstrating a need for episodic receptor activation. Phrenic motor neurons retrogradely labeled with cholera toxin B fragment expressed both 5-HT2A and 5-HT2B receptors. Pre-treatment with NADPH oxidase inhibitors (apocynin and diphenylenodium (DPI)) blocked 5-HT2B, but not 5-HT2A-induced pMF. Thus, multiple spinal type 2 serotonin receptors elicit pMF, but they act via distinct mechanisms that differ in their requirement for NADPH oxidase activity.
Respiratory Physiology & Neurobiology | 2011
Adrianne G. Huxtable; S. Vinit; James A. Windelborn; S.M. Crader; C.H. Guenther; Jyoti J. Watters; Gordon S. Mitchell
Many lung and central nervous system disorders require robust and appropriate physiological responses to assure adequate breathing. Factors undermining the efficacy of ventilatory control will diminish the ability to compensate for pathology, threatening life itself. Although most of these same disorders are associated with systemic and/or neuroinflammation, and inflammation affects neural function, we are only beginning to understand interactions between inflammation and any aspect of ventilatory control (e.g. sensory receptors, rhythm generation, chemoreflexes, plasticity). Here we review available evidence, and present limited new data suggesting that systemic (or neural) inflammation impairs two key elements of ventilatory control: chemoreflexes and respiratory motor (versus sensory) plasticity. Achieving an understanding of mechanisms whereby inflammation undermines ventilatory control is fundamental since inflammation may diminish the capacity for natural, compensatory responses during pathological states, and the ability to harness respiratory plasticity as a therapeutic strategy in the treatment of devastating breathing disorders, such as during cervical spinal injury or motor neuron disease.
Experimental Neurology | 2011
F.J. Golder; David D. Fuller; Mary Rachael Lovett-Barr; S. Vinit; D.K. Resnick; Gordon S. Mitchell
Respiratory failure is the leading cause of death after cervical spinal injury. We hypothesized that incomplete cervical spinal injuries would alter respiratory pattern and initiate plasticity in the neural control of breathing. Further, we hypothesized that the severity of cervical spinal contusion would correlate with changes in breathing pattern. Fourteen days after C4-C5 contusions, respiratory frequency and tidal volume were measured in unanesthetized Sprague Dawley rats in a whole body plethysmograph. Phrenic motor output was monitored in the same rats which were anesthetized, vagotomized, paralyzed and ventilated to eliminate and/or control sensory feedback that could alter breathing patterns. The extent of spinal injury was approximated histologically by measurements of the injury-induced cyst area in transverse sections; cysts ranged from 2 to 28% of spinal cross-sectional area, and had a unilateral bias. In unanesthetized rats, the severity of spinal injury correlated negatively with tidal volume (R(2)=0.85; p<0.001) and positively with breathing frequency (R(2)=0.65; p<0.05). Thus, the severity of C4-C5 spinal contusion dictates post-injury breathing pattern. In anesthetized rats, phrenic burst amplitude was decreased on the side of injury, and burst frequency correlated negatively with contusion size (R(2)=0.51; p<0.05). A strong correlation between unanesthetized breathing pattern and the pattern of phrenic bursts in anesthetized, vagotomized and ventilated rats suggests that changes in respiratory motor output after spinal injury reflect, at least in part, intrinsic neural mechanisms of CNS plasticity initiated by injury.
Respiratory Physiology & Neurobiology | 2009
S. Vinit; Anne Kastner
The rodent respiratory system is a relevant model for study of the intrinsic post-lesion mechanisms of neuronal plasticity and resulting recovery after high cervical spinal cord injury. An unilateral cervical injury (hemisection, lateral section or contusion) interrupts unilaterally bulbospinal respiratory pathways to phrenic motor neurons innervating the diaphragm and leads to important respiratory defects on the injured side. However, the ipsilateral phrenic nerve exhibits a spontaneous and progressive recovery with post-lesion time. Shortly after a lateral injury, this partial recovery depends on the activation of contralateral pathways that cross the spinal midline caudal to the injury. Activation of these crossed phrenic pathways after the injury depends on the integrity of phrenic sensory afferents. These pathways are located principally in the lateral part of the spinal cord and involve 30% of the medullary respiratory neurons. By contrast, in chronic post-lesion conditions, the medial part of the spinal cord becomes sufficient to trigger substantial ipsilateral respiratory drive. Thus, after unilateral cervical spinal cord injury, respiratory reactivation is associated with a time-dependent anatomo-functional reorganization of the bulbospinal respiratory descending pathways, which represents an adaptative strategy for functional compensation.
Experimental Neurology | 2015
Angela Navarrete-Opazo; S. Vinit; Brendan J. Dougherty; Gordon S. Mitchell
UNLABELLED A major cause of mortality after spinal cord injury is respiratory failure. In normal rats, acute intermittent hypoxia (AIH) induces respiratory motor plasticity, expressed as diaphragm (Dia) and second external intercostal (T2 EIC) long-term facilitation (LTF). Dia (not T2 EIC) LTF is enhanced by systemic adenosine 2A (A2A) receptor inhibition in normal rats. We investigated the respective contributions of Dia and T2 EIC to daily AIH-induced functional recovery of breathing capacity with/without A2A receptor antagonist (KW6002, i.p.) following C2 hemisection (C2HS). Rats received daily AIH (dAIH: 10, 5-min episodes, 10.5% O2; 5-min normoxic intervals; 7 successive days beginning 7days post-C2HS) or daily normoxia (dNx) with/without KW6002, followed by weekly (reminder) presentations for 8weeks. Ventilation and EMGs from bilateral diaphragm and T2 EIC muscles were measured with room air breathing (21% O2) and maximum chemoreceptor stimulation ( MCS 7% CO2, 10.5% O2). dAIH increased tidal volume (VT) in C2HS rats breathing room air (dAIH+vehicle: 0.47±0.02, dNx+vehicle: 0.40±0.01ml/100g; p<0.05) and MCS (dAIH+vehicle: 0.83±0.01, dNx+vehicle: 0.73±0.01ml/100g; p<0.001); KW6002 had no significant effect. dAIH enhanced contralateral (uninjured) diaphragm EMG activity, an effect attenuated by KW6002, during room air breathing and MCS (p<0.05). Although dAIH enhanced contralateral T2 EIC EMG activity during room air breathing, KW6002 had no effect. dAIH had no statistically significant effects on diaphragm or T2 EIC EMG activity ipsilateral to injury. Thus, two weeks post-C2HS: 1) dAIH enhances breathing capacity by effects on contralateral diaphragm and T2 EIC activity; and 2) dAIH-induced recovery is A2A dependent in diaphragm, but not T2 EIC. Daily AIH may be a useful in promoting functional recovery of breathing capacity after cervical spinal injury, but A2A receptor antagonists (e.g. caffeine) may undermine its effectiveness shortly after injury.
Respiratory Physiology & Neurobiology | 2011
S. Vinit; James A. Windelborn; Gordon S. Mitchell
Lipopolysaccharide (LPS) induces inflammatory responses, including microglial activation in the central nervous system. Since LPS impairs certain forms of hippocampal and spinal neuroplasticity, we hypothesized that LPS would impair phrenic long-term facilitation (pLTF) following acute intermittent hypoxia (AIH) in outbred Sprague-Dawley (SD) and inbred Lewis (L) rats. Approximately 3h following a single LPS injection (i.p.), the phrenic response during hypoxic episodes is reduced in both rat strains versus vehicle treated, control rats (SD: 84 ± 7% vs. 128 ± 14% baseline for control, p < 0.05; L: 62 ± 10% vs. 90 ± 9% baseline for control, p < 0.05). At 60 min post-AIH, pLTF is also diminished by LPS in both strains: (SD: 22 ± 5% vs. 73.5 ± 14% baseline for control, p < 0.05; L: 18 ± 15% vs. 56 ± 8% baseline for control, p < 0.05). LPS alone does not affect phrenic burst frequency in either rat strain, suggesting that acute LPS injection has minimal effect on brainstem respiratory rhythm generation. Thus, systemic LPS injections and (presumptive) inflammation impair pLTF, a form of spinal neuroplasticity in respiratory motor control. These results suggest that ongoing infection or inflammation must be carefully considered in studies of respiratory plasticity, or during attempts to harness spinal plasticity as a therapeutic tool in the treatment of respiratory insufficiency, such as spinal cord injury.
Journal of Applied Physiology | 2014
Adrianne G. Huxtable; P.M. MacFarlane; S. Vinit; Nicole L. Nichols; Erica A. Dale; Gordon S. Mitchell
Acute intermittent hypoxia (AIH; three 5-min hypoxic episodes) causes a form of phrenic motor facilitation (pMF) known as phrenic long-term facilitation (pLTF); pLTF is initiated by spinal activation of Gq protein-coupled 5-HT2 receptors. Because α1 adrenergic receptors are expressed in the phrenic motor nucleus and are also Gq protein-coupled, we hypothesized that α1 receptors are sufficient, but not necessary for AIH-induced pLTF. In anesthetized, paralyzed, and ventilated rats, episodic spinal application of the α1 receptor agonist phenylephrine (PE) elicited dose-dependent pMF (10 and 100 μM, P < 0.05; but not 1 μM). PE-induced pMF was blocked by the α1 receptor antagonist prazosin (1 mM; -20 ± 20% at 60 min, -5 ± 21% at 90 min; n = 6). Although α1 receptor activation is sufficient to induce pMF, it was not necessary for AIH-induced pLTF because intrathecal prazosin (1 mM) did not alter AIH-induced pLTF (56 ± 9% at 60 min, 78 ± 12% at 90 min; n = 9). Intravenous (iv) prazosin (150 μg/kg) appeared to reduce pLTF (21 ± 9% at 60 min, 26 ± 8% at 90 min), but this effect was not significant. Hypoglossal long-term facilitation was unaffected by intrathecal prazosin, but was blocked by iv prazosin (-4 ± 14% at 60 min, -13 ± 18% at 90 min), suggesting different LTF mechanisms in different motor neuron pools. In conclusion, Gq protein-coupled α1 adrenergic receptors evoke pMF, but they are not necessary for AIH-induced pLTF.
Journal of Neurotrauma | 2014
Angela Navarrete-Opazo; S. Vinit; Gordon S. Mitchell
Acute intermittent hypoxia (AIH) elicits diaphragm (Dia) and second external intercostal (T2 EIC) long-term facilitation (LTF) in normal unanesthetized rats. Although AIH-induced phrenic LTF is serotonin dependent, adenosine constrained in anesthetized rats, this has not been tested in unanesthetized animals. Cervical (C2) spinal hemisection (C2HS) abolishes phrenic LTF because of loss of serotonergic inputs 2 weeks post-injury, but LTF returns 8 weeks post-injury. We tested three hypotheses in unanesthetized rats: (1) systemic adenosine 2aA (A2A) receptor inhibition with intraperitoneal (IP) KW6002 enhances Dia and T2 EIC LTF in normal rats; (2) Dia and T2 EIC LTF are expressed after chronic (8 weeks), but not acute (1 week) C2HS; and (3) KW6002 enhances Dia and T2 EIC LTF after chronic (not acute) C2HS. Electromyography radiotelemetry was used to record Dia and T2 EIC activity during normoxia (21% O2), before and after AIH (10, 5-min 10.5% O2, 5-min intervals). In normal rats, KW6002 enhanced DiaLTF versus AIH alone (33.1±4.6% vs. 22.1±6.4% baseline, respectively; p<0.001), but had no effect on T2 EIC LTF (p>0.05). Although Dia and T2 EIC LTF were not observed 2 weeks post-C2HS, LTF was observed in contralateral (uninjured) Dia and T2 EIC 8 weeks post-C2HS (18.7±2.7% and 34.9±4.9% baseline, respectively; p<0.05), with variable ipsilateral expression. KW6002 had no significant effects on contralateral Dia (p=0.447) or T2 EIC LTF (p=0.796). We conclude that moderate AIH induces Dia and T2 EIC LTF after chronic, but not acute cervical spinal injuries. A single A2A receptor antagonist dose enhances AIH-induced Dia LTF in normal rats, but this effect is not significant in chronic (8 weeks) C2HS unanesthetized rats.