Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Vinitha Sree is active.

Publication


Featured researches published by S. Vinitha Sree.


Biomedical Signal Processing and Control | 2012

Automated diagnosis of epileptic EEG using entropies

U. Rajendra Acharya; Filippo Molinari; S. Vinitha Sree; Subhagata Chattopadhyay; Kwan-Hoong Ng; Jasjit S. Suri

Abstract Epilepsy is a neurological disorder characterized by the presence of recurring seizures. Like many other neurological disorders, epilepsy can be assessed by the electroencephalogram (EEG). The EEG signal is highly non-linear and non-stationary, and hence, it is difficult to characterize and interpret it. However, it is a well-established clinical technique with low associated costs. In this work, we propose a methodology for the automatic detection of normal , pre-ictal , and ictal conditions from recorded EEG signals. Four entropy features namely Approximate Entropy ( ApEn ), Sample Entropy ( SampEn ), Phase Entropy 1 ( S1 ), and Phase Entropy 2 ( S2 ) were extracted from the collected EEG signals. These features were fed to seven different classifiers: Fuzzy Sugeno Classifier (FSC), Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Probabilistic Neural Network (PNN), Decision Tree (DT), Gaussian Mixture Model (GMM), and Naive Bayes Classifier (NBC). Our results show that the Fuzzy classifier was able to differentiate the three classes with a high accuracy of 98.1%. Overall, compared to previous techniques, our proposed strategy is more suitable for diagnosis of epilepsy with higher accuracy.


Knowledge Based Systems | 2013

Automated EEG analysis of epilepsy: A review

U. Rajendra Acharya; S. Vinitha Sree; G. Swapna; Roshan Joy Martis; Jasjit S. Suri

Epilepsy is an electrophysiological disorder of the brain, characterized by recurrent seizures. Electroencephalogram (EEG) is a test that measures and records the electrical activity of the brain, and is widely used in the detection and analysis of epileptic seizures. However, it is often difficult to identify subtle but critical changes in the EEG waveform by visual inspection, thus opening up a vast research area for biomedical engineers to develop and implement several intelligent algorithms for the identification of such subtle changes. Moreover, the EEG signals are nonlinear and non-stationary in nature, which contribute to further complexities related to their manual interpretation and detection of normal and abnormal (interictal and ictal) activities. Hence, it is necessary to develop a Computer Aided Diagnostic (CAD) system to automatically identify the normal and abnormal activities using minimum number of highly discriminating features in classifiers. It has been found that nonlinear features are able to capture the complex physiological phenomena such as abrupt transitions and chaotic behavior in the EEG signals. In this review, we discuss various feature extraction methods and the results of different automated epilepsy stage detection techniques in detail. We also briefly present the various open ended challenges that need to be addressed before a CAD based epilepsy detection system can be set-up in a clinical setting.


International Journal of Neural Systems | 2011

Application of recurrence quantification analysis for the automated identification of epileptic EEG signals.

U. Rajendra Acharya; S. Vinitha Sree; Subhagata Chattopadhyay; Wenwei Yu; Peng Chuan Alvin Ang

Epilepsy is a common neurological disorder that is characterized by the recurrence of seizures. Electroencephalogram (EEG) signals are widely used to diagnose seizures. Because of the non-linear and dynamic nature of the EEG signals, it is difficult to effectively decipher the subtle changes in these signals by visual inspection and by using linear techniques. Therefore, non-linear methods are being researched to analyze the EEG signals. In this work, we use the recorded EEG signals in Recurrence Plots (RP), and extract Recurrence Quantification Analysis (RQA) parameters from the RP in order to classify the EEG signals into normal, ictal, and interictal classes. Recurrence Plot (RP) is a graph that shows all the times at which a state of the dynamical system recurs. Studies have reported significantly different RQA parameters for the three classes. However, more studies are needed to develop classifiers that use these promising features and present good classification accuracy in differentiating the three types of EEG segments. Therefore, in this work, we have used ten RQA parameters to quantify the important features in the EEG signals.These features were fed to seven different classifiers: Support vector machine (SVM), Gaussian Mixture Model (GMM), Fuzzy Sugeno Classifier, K-Nearest Neighbor (KNN), Naive Bayes Classifier (NBC), Decision Tree (DT), and Radial Basis Probabilistic Neural Network (RBPNN). Our results show that the SVM classifier was able to identify the EEG class with an average efficiency of 95.6%, sensitivity and specificity of 98.9% and 97.8%, respectively.


international conference of the ieee engineering in medicine and biology society | 2011

Automated Diagnosis of Glaucoma Using Texture and Higher Order Spectra Features

U. Rajendra Acharya; Sumeet Dua; Xian Du; S. Vinitha Sree; Chua Kuang Chua

Glaucoma is the second leading cause of blindness worldwide. It is a disease in which fluid pressure in the eye increases continuously, damaging the optic nerve and causing vision loss. Computational decision support systems for the early detection of glaucoma can help prevent this complication. The retinal optic nerve fiber layer can be assessed using optical coherence tomography, scanning laser polarimetry, and Heidelberg retina tomography scanning methods. In this paper, we present a novel method for glaucoma detection using a combination of texture and higher order spectra (HOS) features from digital fundus images. Support vector machine, sequential minimal optimization, naive Bayesian, and random-forest classifiers are used to perform supervised classification. Our results demonstrate that the texture and HOS features after z-score normalization and feature selection, and when combined with a random-forest classifier, performs better than the other classifiers and correctly identifies the glaucoma images with an accuracy of more than 91%. The impact of feature ranking and normalization is also studied to improve results. Our proposed novel features are clinically significant and can be used to detect glaucoma accurately.


International Journal of Neural Systems | 2012

Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals.

U. Rajendra Acharya; S. Vinitha Sree; Peng Chuan Alvin Ang; Ratna Yanti; Jasjit S. Suri

Epilepsy, a neurological disorder, is characterized by the recurrence of seizures. Electroencephalogram (EEG) signals, which are used to detect the presence of seizures, are non-linear and dynamic in nature. Visual inspection of the EEG signals for detection of normal, interictal, and ictal activities is a strenuous and time-consuming task due to the huge volumes of EEG segments that have to be studied. Therefore, non-linear methods are being widely used to study EEG signals for the automatic monitoring of epileptic activities. The aim of our work is to develop a Computer Aided Diagnostic (CAD) technique with minimal pre-processing steps that can classify all the three classes of EEG segments, namely normal, interictal, and ictal, using a small number of highly discriminating non-linear features in simple classifiers. To evaluate the technique, segments of normal, interictal, and ictal EEG segments (100 segments in each class) were used. Non-linear features based on the Higher Order Spectra (HOS), two entropies, namely the Approximation Entropy (ApEn) and the Sample Entropy (SampEn), and Fractal Dimension and Hurst Exponent were extracted from the segments. Significant features were selected using the ANOVA test. After evaluating the performance of six classifiers (Decision Tree, Fuzzy Sugeno Classifier, Gaussian Mixture Model, K-Nearest Neighbor, Support Vector Machine, and Radial Basis Probabilistic Neural Network) using a combination of the selected features, we found that using a set of all the selected six features in the Fuzzy classifier resulted in 99.7% classification accuracy. We have demonstrated that our technique is capable of achieving high accuracy using a small number of features that accurately capture the subtle differences in the three different types of EEG (normal, interictal, and ictal) segments. The technique can be easily written as a software application and used by medical professionals without any extensive training and cost. Such software can evolve into an automatic seizure monitoring application in the near future and can aid the doctors in providing better and timely care for the patients suffering from epilepsy.


Journal of Medical Systems | 2012

Thermography Based Breast Cancer Detection Using Texture Features and Support Vector Machine

U. Rajendra Acharya; E. Y. K. Ng; Jen-Hong Tan; S. Vinitha Sree

Breast cancer is a leading cause of death nowadays in women throughout the world. In developed countries, it is the most common type of cancer in women, and it is the second or third most common malignancy in developing countries. The cancer incidence is gradually increasing and remains a significant public health concern. The limitations of mammography as a screening and diagnostic modality, especially in young women with dense breasts, necessitated the development of novel and more effective strategies with high sensitivity and specificity. Thermal imaging (thermography) is a noninvasive imaging procedure used to record the thermal patterns using Infrared (IR) camera. The aim of this study is to evaluate the feasibility of using thermal imaging as a potential tool for detecting breast cancer. In this work, we have used 50 IR breast images (25 normal and 25 cancerous) collected from Singapore General Hospital, Singapore. Texture features were extracted from co-occurrence matrix and run length matrix. Subsequently, these features were fed to the Support Vector Machine (SVM) classifier for automatic classification of normal and malignant breast conditions. Our proposed system gave an accuracy of 88.10%, sensitivity and specificity of 85.71% and 90.48% respectively.


Knowledge Based Systems | 2013

Automated diagnosis of Coronary Artery Disease affected patients using LDA, PCA, ICA and Discrete Wavelet Transform

Donna Giri; U. Rajendra Acharya; Roshan Joy Martis; S. Vinitha Sree; Teik-Cheng Lim; V. I. Thajudin Ahamed; Jasjit S. Suri

Coronary Artery Disease (CAD) is the narrowing of the blood vessels that supply blood and oxygen to the heart. Electrocardiogram (ECG) is an important cardiac signal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insights into the state of health and nature of the disease afflicting the heart. However, it is very difficult to perceive the subtle changes in ECG signals which indicate a particular type of cardiac abnormality. Hence, we have used the heart rate signals from the ECG for the diagnosis of cardiac health. In this work, we propose a methodology for the automatic detection of normal and Coronary Artery Disease conditions using heart rate signals. The heart rate signals are decomposed into frequency sub-bands using Discrete Wavelet Transform (DWT). Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Independent Component Analysis (ICA) were applied on the set of DWT coefficients extracted from particular sub-bands in order to reduce the data dimension. The selected sets of features were fed into four different classifiers: Support Vector Machine (SVM), Gaussian Mixture Model (GMM), Probabilistic Neural Network (PNN) and K-Nearest Neighbor (KNN). Our results showed that the ICA coupled with GMM classifier combination resulted in highest accuracy of 96.8%, sensitivity of 100% and specificity of 93.7% compared to other data reduction techniques (PCA and LDA) and classifiers. Overall, compared to previous techniques, our proposed strategy is more suitable for diagnosis of CAD with higher accuracy.


International Journal of Neural Systems | 2011

AUTOMATIC DETECTION OF EPILEPTIC EEG SIGNALS USING HIGHER ORDER CUMULANT FEATURES

U. Rajendra Acharya; S. Vinitha Sree; Jasjit S. Suri

The unpredictability of the occurrence of epileptic seizures makes it difficult to detect and treat this condition effectively. An automatic system that characterizes epileptic activities in EEG signals would allow patients or the people near them to take appropriate precautions, would allow clinicians to better manage the condition, and could provide more insight into these phenomena thereby revealing important clinical information. Various methods have been proposed to detect epileptic activity in EEG recordings. Because of the nonlinear and dynamic nature of EEG signals, the use of nonlinear Higher Order Spectra (HOS) features is a seemingly promising approach. This paper presents the methodology employed to extract HOS features (specifically, cumulants) from normal, interictal, and epileptic EEG segments and to use significant features in classifiers for the detection of these three classes. In this work, 300 sets of EEG data belonging to the three classes were used for feature extraction and classifier development and evaluation. The results show that the HOS based measures have unique ranges for the different classes with high confidence level (p-value < 0.0001). On evaluating several classifiers with the significant features, it was observed that the Support Vector Machine (SVM) presented a high detection accuracy of 98.5% thereby establishing the possibility of effective EEG segment classification using the proposed technique.


Expert Systems With Applications | 2012

Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework

U. Rajendra Acharya; S. Vinitha Sree; Ang Peng Chuan Alvin; Jasjit S. Suri

Highlights? We present a novel automatic technique for epileptic EEG classification into the normal, interictal, and ictal activities. ? We use eigenvalues extracted from wavelet coefficients as features. ? Several supervised learning based classifiers were trained using selected features. ? We demonstrate that our proposed technique can yield 99% classification accuracy. Electroencephalogram (EEG) signals are used to detect and study the characteristics of epileptic activities. Owing to the non-linear and dynamic nature of EEG signals, visual inspection and interpretation of these signals are tedious, time-consuming, error-prone, and subjected to inter-observer variabilities. Therefore, several Computer Aided Diagnostic (CAD) based studies have adopted non-linear techniques to study the normal, interictal, and ictal activities in EEGs. In this paper, we present a novel automatic technique based on data mining for epileptic activity classification. In order to compare our study with the results of relative studies in the literature, we used the widely used benchmark dataset from Bonn University for evaluation of our proposed technique. Hundred samples each in normal, interictal, and ictal categories were used. We decomposed these segments into wavelet coefficients using Wavelet Packet Decomposition (WPD), and extracted eigenvalues from the resultant wavelet coefficients using Principal Component Analysis (PCA). Significant eigenvalues, selected using the ANOVA test, were used to train and test several supervised classifiers using the 10-fold stratified cross validation technique. We obtained 99% classification accuracy using the Gaussian Mixture Model (GMM) classifier. The proposed technique is capable of classifying EEG segments with clinically acceptable accuracy using less number of features that can be extracted with less computational cost. The technique can be written as a software application that can be easily deployed at a low cost and used with almost no expert training. We foresee that this software can, in the future, evolve into an efficient adjunct tool that cannot only classify epileptic activities in EEG signals but also automatically monitor the onset of seizures and thereby aid the doctors in providing better and timely care for the patients suffering from epilepsy.


Ultrasound in Medicine and Biology | 2012

Atherosclerotic Risk Stratification Strategy for Carotid Arteries Using Texture-Based Features

U. Rajendra Acharya; S. Vinitha Sree; M. Muthu Rama Krishnan; Filippo Molinari; Luca Saba; Sin Yee Stella Ho; Anil T. Ahuja; Suzanne C. Ho; Andrew N. Nicolaides; Jasjit S. Suri

Plaques in the carotid artery result in stenosis, which is one of the main causes for stroke. Patients have to be carefully selected for stenosis treatments as they carry some risk. Since patients with symptomatic plaques have greater risk for strokes, an objective classification technique that classifies the plaques into symptomatic and asymptomatic classes is needed. We present a computer aided diagnostic (CAD) based ultrasound characterization methodology (a class of Atheromatic systems) that classifies the patient into symptomatic and asymptomatic classes using two kinds of datasets: (1) plaque regions in ultrasound carotids segmented semi-automatically and (2) far wall gray-scale intima-media thickness (IMT) regions along the common carotid artery segmented automatically. For both kinds of datasets, the protocol consists of estimating texture-based features in frameworks of local binary patterns (LBP) and Laws texture energy (LTE) and applying these features for obtaining the training parameters, which are then used for classification. Our database consists of 150 asymptomatic and 196 symptomatic plaque regions and 342 IMT wall regions. When using the Atheromatic-based system on semiautomatically determined plaque regions, support vector machine (SVM) classifier was adapted with highest accuracy of 83%. The accuracy registered was 89.5% on the far wall gray-scale IMT regions when using SVM, K-nearest neighbor (KNN) or radial basis probabilistic neural network (RBPNN) classifiers. LBP/LTE-based techniques on both kinds of carotid datasets are noninvasive, fast, objective and cost-effective for plaque characterization and, hence, will add more value to the existing carotid plaque diagnostics protocol. We have also proposed an index for each type of datasets: AtheromaticPi, for carotid plaque region, and AtheromaticWi, for IMT carotid wall region, based on the combination of the respective significant features. These indices show a separation between symptomatic and asymptomatic by 4.53 units and 4.42 units, respectively, thereby supporting the texture hypothesis classification.

Collaboration


Dive into the S. Vinitha Sree's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Y. K. Ng

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Dhanjoo N. Ghista

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Subhagata Chattopadhyay

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

M. Muthu Rama Krishnan

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

João M. Sanches

Instituto Superior Técnico

View shared research outputs
Researchain Logo
Decentralizing Knowledge