Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Westerhoff is active.

Publication


Featured researches published by S. Westerhoff.


Physical Review Letters | 2004

Measurement of the flux of ultrahigh energy cosmic rays from monocular observations by the high resolution fly's eye experiment

R. Abbasi; T. Abu-Zayyad; J.F. Amann; G. Archbold; J. A. Bellido; K. Belov; J.W. Belz; D. R. Bergman; Z. Cao; R. W. Clay; M.D. Cooper; H. Dai; B. R. Dawson; Adam A. Everett; Yu. A. Fedorova; J.H.V. Girard; R.C. Gray; W. Hanlon; C. M. Hoffman; M. H. Holzscheiter; P. Hüntemeyer; B.F. Jones; Charles C. H. Jui; D. Kieda; K. Kim; M. A. Kirn; E. C. Loh; N. Manago; L.J. Marek; K. Martens

We have measured the cosmic ray spectrum above 10^17.2 eV using the two air fluorescence detectors of the High Resolution Flys Eye observatory operating in monocular mode. We describe the detector, photo-tube and atmospheric calibrations, as well as the analysis techniques for the two detectors. We fit the spectrum to a model consisting of galactic and extra-galactic sources.


The Astrophysical Journal | 2005

A Study of the Composition of Ultra-High-Energy Cosmic Rays Using the High-Resolution Fly’s Eye

R. Abbasi; T. Abu-Zayyad; G. Archbold; R. Atkins; J. A. Bellido; K. Belov; J.W. Belz; S. BenZvi; D. R. Bergman; J. Boyer; G. W. Burt; Z. Cao; R. W. Clay; B. M. Connolly; B. R. Dawson; W. Deng; Y. Fedorova; J. Findlay; C. Finley; W. Hanlon; G. Hughes; P. Hüntemeyer; Charles C. H. Jui; K. Kim; M. A. Kirn; B. C. Knapp; E. C. Loh; M. M. Maetas; K. Martens; G. Martin

The composition of Ultra High Energy Cosmic Rays (UHECR) is measured with the High Resolution Flys Eye cosmic ray observatory (HiRes) data using the Xmax technique. Data were collected in stereo between 1999 November and 2001 September. The data are reconstructed with well-determined geometry. Measurements of the atmospheric transmission are incorporated in the reconstruction. The detector resolution is found to be 30 g cm^-2 in Xmax and 13% in Energy. The Xmax elongation rate between 10^18.0 eV and 10^19.4 eV is measured to be 54.5 +/- 6.5 (stat) +/- 4.5 (sys) g cm^-2 per decade. This is compared to predictions using the QGSJet01 and SIBYLL 2.1 hadronic interaction models for both protons and iron nuclei. CORSIKA-generated Extensive Air Showers (EAS) are incorporated directly into a detailed detector Monte Carlo program. The elongation rate and the Xmax distribution widths are consistent with a constant or slowly changing and predominantly light composition. A simple model containing only protons and iron nuclei is compared to QGSJet and SIBYLL. The best agreement between the model and the data is at 80% protons for QGSJet and 60% protons for SIBYLL.The composition of ultra-high-energy cosmic rays is measured with the High Resolution Flys Eye cosmic-ray observatory data using the Xmax technique. Data were collected in stereo between 1999 November and 2001 September. The data are reconstructed with well-determined geometry. Measurements of the atmospheric transmission are incorporated in the reconstruction. The detector resolution is found to be 30 g cm-2 in Xmax and 13% in energy. The Xmax elongation rate between 1018.0 and 1019.4 eV is measured to be 54.5 ± 6.5 ± 4.5 g cm-2 per decade. This is compared with predictions using the QGSJet01 and SIBYLL 2.1 hadronic interaction models for both protons and iron nuclei. CORSIKA-generated extensive air showers are incorporated directly into a detailed detector Monte Carlo program. The elongation rate and the Xmax distribution widths are consistent with a constant or slowly changing and predominantly light composition. A simple model containing only protons and iron nuclei is compared with QGSJet and SIBYLL. The best agreement between the model and the data is for 80% protons for QGSJet and 60% protons for SIBYLL.


The Astrophysical Journal | 2006

Search for cross-correlations of ultrahigh-energy cosmic rays with BL Lacertae objects

R. Abbasi; T. Abu-Zayyad; J.F. Amann; G. Archbold; K. Belov; J.W. Belz; S. BenZvi; D. R. Bergman; S.A. Blake; J. Boyer; G. W. Burt; Z. Cao; B. M. Connolly; W. Deng; Y. Fedorova; J. Findlay; C. Finley; W. Hanlon; C. M. Hoffman; M. H. Holzscheiter; G. Hughes; P. Hüntemeyer; Charles C. H. Jui; K. Kim; M. A. Kirn; B. C. Knapp; E. C. Loh; M.M. Maestas; N. Manago; E.J. Mannel

Data taken in stereo mode by the High Resolution Flys Eye (HiRes) air fluorescence experiment are analyzed to search for correlations between the arrival directions of ultra--high-energy cosmic rays with the positions of BL Lacertae objects. Several previous claims of significant correlations between BL Lacs and cosmic rays observed by other experiments are tested. These claims are not supported by the HiRes data. However, we verify a recent analysis of correlations between HiRes events and a subset of confirmed BL Lacs from the 10th Veron Catalog, and we study this correlation in detail. Due to the a posteriori nature of the search, the significance level cannot be reliably estimated and the correlation must be tested independently before any claim can be made. We identify the precise hypotheses that will be tested with statistically independent data.Data taken in stereo mode by the High Resolution Flys Eye (HiRes) air fluorescence experiment are analyzed to search for correlations between the arrival directions of ultrahigh-energy cosmic rays with the positions of BL Lacertae objects. Several previous claims of significant correlations between BL Lac objects and cosmic rays observed by other experiments are tested. These claims are not supported by the HiRes data. However, we verify a recent analysis of correlations between HiRes events and a subset of confirmed BL Lac objects from the 10th Veron Catalog, and we study this correlation in detail. Due to the a posteriori nature of the search, the significance level cannot be reliably estimated and the correlation must be tested independently before any claim can be made. We identify the precise hypotheses that will be tested with statistically independent data.


The Astrophysical Journal | 2000

Evidence for T[CLC]e[/CLC]V Emission from GRB 970417[CLC]a[/CLC]

R. Atkins; W. Benbow; D. Berley; M. L. Chen; D. G. Coyne; B. L. Dingus; D. E. Dorfan; R. W. Ellsworth; D. Evans; A. Falcone; Lazar Fleysher; R. Fleysher; Galen R. Gisler; J. A. Goodman; C. M. Hoffman; S. Hugenberger; L. A. Kelley; I. Leonor; Mark L. McConnell; J. F. McCullough; J. E. McEnery; R. S. Miller; Allen Mincer; Miguel F. Morales; P. Nemethy; J. Ryan; B. C. Shen; A. Shoup; Constantine Sinnis; A. J. Smith

Milagrito, a detector sensitive to very high energy gamma rays, monitored the northern sky from 1997 February through 1998 May. With a large field of view and a high duty cycle, this instrument was well suited to perform a search for TeV gamma-ray bursts (GRBs). We report on a search made for TeV counterparts to GRBs observed by BATSE. BATSE detected 54 GRBs within the field of view of Milagrito during this period. An excess of events coincident in time and space with one of these bursts, GRB 970417a, was observed by Milagrito. The excess has a chance probability of 2.8 × 10-5 of being a fluctuation of the background. The probability for observing an excess at least this large from any of the 54 bursts is 1.5 × 10-3. No significant correlations were detected from the other bursts.


The Astrophysical Journal | 2004

Study of small-scale anisotropy of ultra-high-energy cosmic rays observed in stereo by the high resolution fly's eye detector

R. Abbasi; T. Abu-Zayyad; J.F. Amann; G. Archbold; R. Atkins; J. A. Bellido; K. Belov; J.W. Belz; S. BenZvi; D. R. Bergman; J. Boyer; G. W. Burt; Z. Cao; R. W. Clay; B. M. Connolly; B. R. Dawson; W. Deng; Y. Fedorova; J. Findlay; C. Finley; W. Hanlon; C. M. Hoffman; M. H. Holzscheiter; G. Hughes; P. Hüntemeyer; Charles C. H. Jui; K. Kim; M. A. Kirn; B. C. Knapp; E. C. Loh

The High Resolution Flys Eye (HiRes) experiment is an air fluorescence detector which, operating in stereo mode, has a typical angular resolution of 0.6 degrees and is sensitive to cosmic rays with energies above 10^18 eV. HiRes is thus an excellent instrument for the study of the arrival directions of ultrahigh energy cosmic rays. We present the results of a search for anisotropies in the distribution of arrival directions on small scales (<5 degrees) and at the highest energies (>10^19 eV). The search is based on data recorded between 1999 December and 2004 January, with a total of 271 events above 10^19 eV. No small-scale anisotropy is found, and the strongest clustering found in the HiRes stereo data is consistent at the 52% level with the null hypothesis of isotropically distributed arrival directions.The High Resolution Fly’s Eye (HiRes) experiment is an air fluorescence detector which, operating in stereo mode, has a typical angular resolution of 0 .6 and is sensitive to cosmic rays with energies above 10 18 eV. The HiRes cosmic-ray detector is thus an excellent instrument for the study of the arrival directions of ultra–highenergy cosmic rays. We present the results of a search for anisotropies in the distribution of arrival directions on small scales (!5) and at the highest energies (110 19 eV). The search is based on data recorded between 1999 December and 2004 January, with a total of 271 events above 10 19 eV. No small-scale anisotropy is found, and the strongest clustering found in the HiRes stereo data is consistent at the 52% level with the null hypothesis of isotropically distributed arrival directions. Subject headings: acceleration of particles — cosmic rays — large-scale structure of universe


The Astrophysical Journal | 2005

Search for point sources of ultra-high-energy cosmic rays above 4.0 × 1019 ev using a maximum likelihood ratio test

R. Abbasi; T. Abu-Zayyad; J.F. Amann; G. Archbold; R. Atkins; J. A. Bellido; K. Belov; J.W. Belz; S. BenZvi; D. R. Bergman; J. Boyer; G. W. Burt; Z. Cao; R. W. Clay; B. M. Connolly; B. R. Dawson; W. Deng; Glennys R. Farrar; Y. Fedorova; J. Findlay; C. Finley; W. Hanlon; C. M. Hoffman; M. H. Holzscheiter; G. Hughes; P. Hüntemeyer; Charles C. H. Jui; K. Kim; M. A. Kirn; B. C. Knapp

We present the results of a search for cosmic-ray point sources at energies in excess of 4.0 × 1019 eV in the combined data sets recorded by the Akeno Giant Air Shower Array and High Resolution Flys Eye stereo experiments. The analysis is based on a maximum likelihood ratio test using the probability density function for each event rather than requiring an a priori choice of a fixed angular bin size. No statistically significant clustering of events consistent with a point source is found.


Astroparticle Physics | 2007

Measurement of the Aerosol Phase Function at the Pierre Auger Observatory

S. BenZvi; B. M. Connolly; J. A. J. Matthews; Michael Prouza; E.F. Visbal; S. Westerhoff

Abstract Air fluorescence detectors measure the energy of ultra-high energy cosmic rays by collecting fluorescence light emitted from nitrogen molecules along the extensive air shower cascade. To ensure a reliable energy determination, the light signal needs to be corrected for atmospheric effects, which not only attenuate the signal, but also produce a non-negligible background component due to scattered Cherenkov light and multiple-scattered light. The correction requires regular measurements of the aerosol attenuation length and the aerosol phase function, defined as the probability of light scattered in a given direction. At the Pierre Auger Observatory in Malargue, Argentina, the phase function is measured on an hourly basis using two aerosol phase function (APF) light sources. These sources direct a UV light beam across the field of view of the fluorescence detectors; the phase function can be extracted from the image of the shots in the fluorescence detector cameras. This paper describes the design, current status, standard operation procedure, and performance of the APF system at the Pierre Auger Observatory.


Astroparticle Physics | 2006

Techniques for measuring atmospheric aerosols at the High Resolution Fly's Eye experiment

R. Abbasi; T. Abu-Zayyad; J.F. Amann; G. Archbold; K. Belov; S. BenZvi; J.W. Belz; D. R. Bergman; J. Boyer; C. Cannon; Z. Cao; B.M. Connolly; J. Fedorova; C. Finley; J.H.V. Girard; R.C. Gray; W. Hanlon; C. M. Hoffman; M.H. Holzscheiter; G.A. Hughes; P. Hüntemeyer; Charles C. H. Jui; K. Kim; M.A. Kirn; B. C. Knapp; E. C. Loh; K. Martens; N. Manago; E.J. Mannel; J. A J Matthews

We describe several techniques developed by the High Resolution Flys Eye experiment for measuring aerosol vertical optical depth, aerosol horizontal attenuation length, and aerosol phase function. The techniques are based on measurements of side-scattered light generated by a steerable ultraviolet laser and collected by an optical detector designed to measure fluorescence light from cosmic-ray air showers. We also present a technique to cross-check the aerosol optical depth measurement using air showers observed in stereo. These methods can be used by future air fluorescence experiments.


Astroparticle Physics | 2004

A search for arrival direction clustering in the HiRes-I monocular data above 1019.5 eV

R. Abbasi; T. Abu-Zayyad; J.F. Amann; G. Archbold; R. Atkins; J. A. Bellido; K. Belov; J.W. Belz; S. BenZvi; D. R. Bergman; G. W. Burt; Z. Cao; R. W. Clay; B. M. Connolly; B. R. Dawson; W. Deng; Y. Fedorova; J. Findlay; C. Finley; W. Hanlon; C. M. Hoffman; M. H. Holzscheiter; G. Hughes; P. Hüntemeyer; Charles C. H. Jui; K. Kim; M. A. Kirn; E. C. Loh; M.M. Maestas; N. Manago

In the past few years, small scale anisotropy has become a primary focus in the search for source of Ultra-High Energy Cosmic Rays (UHECRs). The Akeno Giant Air Shower Array (AGASA) has reported the presence of clusters of event arrival directions in their highest energy data set. The High Resolution Flys Eye (HiRes) has accumulated an exposure in one of its monocular eyes at energies above 10^(19.5) eV comparable to that of AGASA. However, monocular events observed with an air fluorescence detector are characterized by highly asymmetric angular resolution. A method is developed for measuring autocorrelation with asymmetric angular resolution. It is concluded that HiRes-I observations are consistent with no autocorrelation and that the sensitivity to clustering of the HiRes-I detector is comparable to that of the reported AGASA data set. Furthermore, we state with a 90% confidence level that no more than 13% of the observed HiRes-I events above 10^(19.5) eV could be sharing common arrival directions. However, because a measure of autocorrelation makes no assumption of the underlying astrophysical mechanism that results in clustering phenomena, we cannot claim that the HiRes monocular analysis and the AGASA analysis are inconsistent beyond a specified confidence level.


Astroparticle Physics | 2006

A measurement of time-averaged aerosol optical depth using air-showers observed in stereo by HiRes

R. Abbasi; T. Abu-Zayyad; J.F. Amann; G. Archbold; R. Atkins; K. Belov; J.W. Belz; S. BenZvi; D. R. Bergman; J. Boyer; C. Cannon; Z. Cao; B.M. Connolly; Y. Fedorova; C. Finley; W. Hanlon; C. M. Hoffman; M. H. Holzscheiter; G. Hughes; P. Hüntemeyer; Charles C. H. Jui; M. A. Kirn; B. C. Knapp; E. C. Loh; N. Manago; E.J. Mannel; K. Martens; J. A J Matthews; J. N. Matthews; A. O’Neill

Air fluorescence measurements of cosmic ray energy must be corrected for attenuation of the atmosphere. In this paper we show that the air-showers themselves can yield a measurement of the aerosol attenuation in terms of optical depth, time-averaged over extended periods. Although the technique lacks statistical power to make the critical hourly measurements that only specialized active instruments can achieve, we note the technique does not depend on absolute calibration of the detector hardware, and requires no additional equipment beyond the fluorescence detectors that observe the air showers. This paper describes the technique, and presents results based on analysis of 1258 air-showers observed in stereo by the High Resolution Flys Eye over a four year span.

Collaboration


Dive into the S. Westerhoff's collaboration.

Top Co-Authors

Avatar

C. M. Hoffman

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge