Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. X. Hu is active.

Publication


Featured researches published by S. X. Hu.


Physics of Plasmas | 2015

Direct-drive inertial confinement fusion: A review

R. S. Craxton; Karen S. Anderson; T. R. Boehly; V.N. Goncharov; D. R. Harding; J. P. Knauer; R. L. McCrory; P.W. McKenty; D. D. Meyerhofer; J. F. Myatt; Andrew J. Schmitt; J. D. Sethian; R. W. Short; S. Skupsky; W. Theobald; W. L. Kruer; Kokichi Tanaka; R. Betti; T.J.B. Collins; J. A. Delettrez; S. X. Hu; J.A. Marozas; A. V. Maximov; D.T. Michel; P. B. Radha; S. P. Regan; T. C. Sangster; W. Seka; A. A. Solodov; J. M. Soures

The direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. The problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 μm—the third harmonic of the Nd:glass laser—and 0.248 μm (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be nonlocal in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive–ignition experiments to be performed on the National Ignition Facility [Haynam et al., Appl. Opt. 46(16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 μm and 1/4 μm. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.


Physical Review Letters | 2013

Filamentation instability of counterstreaming laser-driven plasmas.

W. Fox; G. Fiksel; A. Bhattacharjee; P.-Y. Chang; K. Germaschewski; S. X. Hu; P.M. Nilson

Filamentation due to the growth of a Weibel-type instability was observed in the interaction of a pair of counterstreaming, ablatively driven plasma flows, in a supersonic, collisionless regime relevant to astrophysical collisionless shocks. The flows were created by irradiating a pair of opposing plastic (CH) foils with 1.8 kJ, 2-ns laser pulses on the OMEGA EP Laser System. Ultrafast laser-driven proton radiography was used to image the Weibel-generated electromagnetic fields. The experimental observations are in good agreement with the analytical theory of the Weibel instability and with particle-in-cell simulations.


Physics of Plasmas | 2014

Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGAa)

V.N. Goncharov; T. C. Sangster; R. Betti; T. R. Boehly; M.J. Bonino; T.J.B. Collins; R. S. Craxton; J. A. Delettrez; D. H. Edgell; R. Epstein; R.K. Follett; C.J. Forrest; D. H. Froula; V. Yu. Glebov; D. R. Harding; R.J. Henchen; S. X. Hu; I.V. Igumenshchev; R. Janezic; J. H. Kelly; Thomas Kessler; T. Z. Kosc; S. J. Loucks; J.A. Marozas; F. J. Marshall; A. V. Maximov; R.L. McCrory; P.W. McKenty; D. D. Meyerhofer; D.T. Michel

Reaching ignition in direct-drive (DD) inertial confinement fusion implosions requires achieving central pressures in excess of 100 Gbar. The OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] is used to study the physics of implosions that are hydrodynamically equivalent to the ignition designs on the National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)]. It is shown that the highest hot-spot pressures (up to 40 Gbar) are achieved in target designs with a fuel adiabat of α ≃ 4, an implosion velocity of 3.8 × 107 cm/s, and a laser intensity of ∼1015 W/cm2. These moderate-adiabat implosions are well understood using two-dimensional hydrocode simulations. The performance of lower-adiabat implosions is significantly degraded relative to code predictions, a common feature between DD implosions on OMEGA and indirect-drive cryogenic implosions on the NIF. Simplified theoretical models are developed to gain physical understanding of the implosion dynamics th...


Physics of Plasmas | 2009

Demonstration of the shock-timing technique for ignition targets on the National Ignition Facility

T. R. Boehly; D. H. Munro; Peter M. Celliers; R. E. Olson; D. G. Hicks; V.N. Goncharov; G. W. Collins; H. F. Robey; S. X. Hu; J. A. Morozas; T. C. Sangster; O. L. Landen; D. D. Meyerhofer

A high-performance inertial confinement fusion capsule is compressed by multiple shock waves before it implodes. To minimize the entropy acquired by the fuel, the strength and timing of those shock waves must be accurately controlled. Ignition experiments at the National Ignition Facility (NIF) will employ surrogate targets designed to mimic ignition targets while making it possible to measure the shock velocities inside the capsule. A series of experiments on the OMEGA laser facility [Boehly et al. , Opt. Commun.133, 495 (1997)] validated those targets and the diagnostic techniques proposed. Quartz was selected for the diagnostic window and shock-velocity measurements were demonstrated in Hohlraum targets heated to 180 eV. Cryogenic experiments using targets filled with liquid deuterium further demonstrated the entire timing technique in a Hohlraum environment. Direct-drive cryogenic targets with multiple spherical shocks were used to further validate this technique, including convergence effects at relevant pressures (velocities) and sizes. These results provide confidence that shock velocity and timing can be measured in NIF ignition targets, allowing these critical parameters to be optimized.


Physics of Plasmas | 2012

Spherical shock-ignition experiments with the 40 + 20-beam configuration on OMEGA

W. Theobald; R. Nora; M. Lafon; A. Casner; X. Ribeyre; Karen S. Anderson; R. Betti; J. A. Delettrez; J. A. Frenje; V. Yu. Glebov; O. V. Gotchev; M. Hohenberger; S. X. Hu; F. J. Marshall; D. D. Meyerhofer; T. C. Sangster; G. Schurtz; W. Seka; V. A. Smalyuk; C. Stoeckl; B. Yaakobi

Spherical shock-ignition experiments on OMEGA used a novel beam configuration that separates low-intensity compression beams and high-intensity spike beams. Significant improvements in the performance of plastic-shell, D2 implosions were observed with repointed beams. The analysis of the coupling of the high-intensity spike beam energy into the imploding capsule indicates that absorbed hot-electron energy contributes to the coupling. The backscattering of laser energy was measured to reach up to 36% at single-beam intensities of ∼8 × 1015 W/cm2. Hard x-ray measurements revealed a relatively low hot-electron temperature of ∼30 keV independent of intensity and timing. At the highest intensity, stimulated Brillouin scattering occurs near and above the quarter-critical density and the two-plasmon-decay instability is suppressed.


Physics of Plasmas | 2013

Improving cryogenic deuterium–tritium implosion performance on OMEGA

T. C. Sangster; V.N. Goncharov; R. Betti; P. B. Radha; T. R. Boehly; D. T. Casey; T.J.B. Collins; R. S. Craxton; J. A. Delettrez; D. H. Edgell; R. Epstein; C.J. Forrest; J. A. Frenje; D. H. Froula; M. Gatu-Johnson; Y. Yu. Glebov; D. R. Harding; M. Hohenberger; S. X. Hu; I.V. Igumenshchev; R. Janezic; J. H. Kelly; Thomas Kessler; C. Kingsley; T. Z. Kosc; J. P. Knauer; S. J. Loucks; J.A. Marozas; F. J. Marshall; A. V. Maximov

A flexible direct-drive target platform is used to implode cryogenic deuterium–tritium (DT) capsules on the OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)]. The goal of these experiments is to demonstrate ignition hydrodynamically equivalent performance where the laser drive intensity, the implosion velocity, the fuel adiabat, and the in-flight aspect ratio (IFAR) are the same as those for a 1.5-MJ target [Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)] designed to ignite on the National Ignition Facility [Hogan et al., Nucl. Fusion 41, 567 (2001)]. The results from a series of 29 cryogenic DT implosions are presented. The implosions were designed to span a broad region of design space to study target performance as a function of shell stability (adiabat) and implosion velocity. Ablation-front perturbation growth appears to limit target performance at high implosion velocities. Target outer-surface defects associated with contaminant gases in the DT fuel are identified as the dominant per...


Physics of Plasmas | 2012

Experimental reduction of laser imprinting and Rayleigh–Taylor growth in spherically compressed, medium-Z-doped plastic targets

G. Fiksel; S. X. Hu; V. A. Goncharov; D. D. Meyerhofer; T.C. Sangster; V. A. Smalyuk; B. Yaakobi; M.J. Bonino; R.K. Jungquist

The effect of medium-Z doping of plastic ablators on laser imprinting and Rayleigh–Taylor (RT) instability growth was studied using spherical direct-drive implosions on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1977)]. The targets were spherical plastic (CH) shells, with an outer diameter of 860 μm and a thickness of 22 μm, volume doped with a varied concentration of Si (4.3% and 7.4%) and Ge (3.9%). The targets were imploded with 48 beams with a low-adiabat, triple-picket laser shape pulse with a peak intensity of 4×1014W/cm2, and a pulse duration of 2.5 ns. The shells were x-ray radiographed through a 400 -μm opening in the side of the target. The results show that volumetric impurity doping strongly reduces the shell density modulation and the instability growth rate. The amplitude of the initial imprint is reduced by a factor of 2.5 ± 0.5 for CH[4.3% Si] targets and by a factor of 3 ± 0.5 for CH[7.4% Si] and CH[3.9% Ge] targets. At the end of the acceleration phase, the reduc...


Physics of Plasmas | 2013

Hydrodynamic simulations of long-scale-length two-plasmon-decay experiments at the Omega Laser Facility

S. X. Hu; D.T. Michel; D. H. Edgell; D. H. Froula; R. K. Follett; V.N. Goncharov; J.F. Myatt; S. Skupsky; B. Yaakobi

Direct-drive–ignition designs with plastic CH ablators create plasmas of long density scale lengths (Ln ≥ 500 μm) at the quarter-critical density (Nqc) region of the driving laser. The two-plasmon–decay (TPD) instability can exceed its threshold in such long-scale-length plasmas (LSPs). To investigate the scaling of TPD-induced hot electrons to laser intensity and plasma conditions, a series of planar experiments have been conducted at the Omega Laser Facility with 2-ns square pulses at the maximum laser energies available on OMEGA and OMEGA EP. Radiation–hydrodynamic simulations have been performed for these LSP experiments using the two-dimensional hydrocode draco. The simulated hydrodynamic evolution of such long-scale-length plasmas has been validated with the time-resolved full-aperture backscattering and Thomson-scattering measurements. draco simulations for CH ablator indicate that (1) ignition-relevant long-scale-length plasmas of Ln approaching ∼400 μm have been created; (2) the density scale len...


Physics of Plasmas | 2011

Multiple spherically converging shock waves in liquid deuterium

T. R. Boehly; V.N. Goncharov; W. Seka; S. X. Hu; J.A. Marozas; D. D. Meyerhofer; Peter M. Celliers; D. G. Hicks; M. A. Barrios; D. E. Fratanduono; G. W. Collins

The fuel entropy and required drive energy for an inertial confinement fusion implosion are set by a sequence of shocks that must be precisely timed to achieve ignition. This Letter reports measurements of multiple spherical shock waves in liquid deuterium that facilitate timing inertial confinement fusion shocks to the required precision. These experiments produced the highest shock velocity observed in liquid deuterium (U(s) = 135  km/s at ∼2500  GPa) and also the first observation of convergence effects on the shock velocity. Simulations model the shock-timing results well when a nonlocal transport model is used in the coronal plasma.


Physics of Plasmas | 2013

Measured hot-electron intensity thresholds quantified by a two-plasmon-decay resonant common-wave gain in various experimental configurationsa)

D.T. Michel; A. V. Maximov; R. W. Short; J. A. Delettrez; D. H. Edgell; S. X. Hu; I.V. Igumenshchev; J.F. Myatt; A. A. Solodov; C. Stoeckl; B. Yaakobi; D. H. Froula

The fraction of laser energy converted into hot electrons by the two-plasmon-decay instability is found to have different overlapped intensity thresholds for various configurations on the Omega Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997); J. H. Kelly et al., J. Phys. IV 133, 75 (2006)]. A factor-of-2 difference in the overlapped intensity threshold is observed between two- and four-beam configurations. The overlapped intensity threshold increases by a factor of 2 between the 4- and 18-beam configurations and by a factor of 3 between the 4- and 60-beam configurations. This is explained by a linear common-wave model where multiple laser beams drive a common electron-plasma wave in a wavevector region that bisects the laser beams (resonant common-wave region in k-space). These experimental results indicate that the hot-electron threshold depends on the hydrodynamic parameters at the quarter-critical density surface, the configuration of the laser beams, and the sum of the intensity of t...

Collaboration


Dive into the S. X. Hu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. H. Froula

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

P. B. Radha

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

R. Betti

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

C. Stoeckl

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

T. R. Boehly

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

J. A. Frenje

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

W. Seka

University of Rochester

View shared research outputs
Researchain Logo
Decentralizing Knowledge