S. Yu. Bratskaya
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. Yu. Bratskaya.
Russian Chemical Bulletin | 2012
A. V. Pestov; S. Yu. Bratskaya; Yu. A. Azarova; Yu. G. Yatluk
A novel method for the synthesis of a hetaryl-containing chelate amino polymer, namely, N-(4(5)-imidazolylmethyl)chitosan (IMC), with a degree of substitution up to 0.3 was proposed. The “synthesis in gel” approach involves direct substitution of the hydroxyl group in 4(5)-imidazolylmethanol. The structures of these polymers were confirmed by 1H NMR data. For sorption studies, IMC samples were crosslinked with epichlorohydrin and diglycidyl ethers of ethylene glycol and diethylene glycol. The degrees of swelling and sorption properties of the polymers largely depend on the crosslinking agent and the degree of crosslinking. The sorption capacities of IMC for AuIII, PtIV, and PdII ions are higher than those of the nonmodified polymer. The extraction of noble metal ions from chloride solutions becomes more selective with increasing degree of crosslinking. The sorption capacity of IMC for CoII and NiII ions is higher than those of chitosan and its known N-heterocyclic derivatives.
Colloid Journal | 2002
S. Yu. Bratskaya; V. A. Avramenko; S. V. Sukhoverkhov; Simona Schwarz
The efficiency of the flocculation of humic compounds and their derivatives with chitosan was studied as a function of pH, concentrations of chitosan and dissolved humic compounds, and also the presence of inorganic coagulants. Samples of humic compounds were studied by the methods of potentiometric titration and gel permeation chromatography. The molecular weight distributions and the spectra of ionization constants of their functional groups were calculated. The flocculation efficiency of chitosan with respect to humic compounds is much higher than that of polyacrylamide.
Russian Journal of Applied Chemistry | 2011
A. V. Pestov; S. Yu. Bratskaya; Yu. A. Azarova; M. I. Kodess; Yu. G. Yatluk
A procedure was developed for preparing a new heterocyclically substituted chelating aminopolymer, N-2-(2-pyridyl)ethyl chitosan, by direct addition of 2-vinylpyridine to chitosan under the conditions of synthesis in gel. The resulting polymer has the degree of substitution of up to 1. The ability of the samples obtained to sorb transition and noble metal ions was evaluated.
Biophysical Chemistry | 2008
V.N. Davydova; S. Yu. Bratskaya; V.I. Gorbach; T.F. Solov'eva; W. Kaca; I.M. Yermak
Electrokinetic properties of complexes of chitosan (Ch) with lipopolysaccharides (LPSs) from Escherichia coli O55:B5, Yersinia pseudotuberculosis 1B 598, and Proteus vulgaris O25 (48/57) and their size distribution were investigated using zeta-potential distribution assay and quasi-elastic light scattering. The interaction of LPS from different microorganisms with chitosan at the same w/w ratio of components (1:1) resulted in the formation of complexes in which the negative charge of LPS was neutralized (LPS from E. coli) or overcompensated (Y. pseudotuberculosis and P. vulgaris). The changing in size of the endotoxin aggregates during binding with chitosan was observed. The binding constants of chitosan with LPSs were determined by a method with using the anionic dye Orange II. The LPS from E. coli possess higher affinity to chitosan in comparison with the two others samples of endotoxin.
Carbohydrate Polymers | 2013
A. Yu. Mironenko; Alexander A. Sergeev; Sergey S. Voznesenskiy; Dmitry Marinin; S. Yu. Bratskaya
Sensitive layer-by-layer (LbL) coatings for optical detection of gaseous NH(3) and HCl were prepared by self-assembly of oppositely charged polysaccharides (chitosan and λ-carrageenan) followed by doping LbLs with pH-sensitive dyes - bromothymol blue (BTB) and Congo red (CR). It has been shown that CR, being an amphoteric dye, diffuses into LbL films regardless of the charge of the outermost polyelectrolyte layer, and the dye loading increases linearly with the LbL film thickness, whereas BTB diffuses into LbL films only when the outermost layer is positively charged, and linearity between dye loading and film thickness holds only up to 8-12 double layers (DLs) deposited. Formation of dye-doped LbL coatings at the surface of K(+)/Na(+) ion-exchanged glass has allowed fabrication of composite optical waveguide (OWG) gas sensor for detection of ammonia and hydrochloric acid vapors. The response time of BTB-doped composite OWG for ammonia detection was below 1s, and the detection limit was below 1 ppm. CR-doped OWG sensors have shown high sensitivity to HCl vapor but slow relaxation time (up to several hours for 12 DL LbL films).
Cellulose | 2016
Yu. A. Azarova; A. V. Pestov; S. Yu. Bratskaya
Here we review chitosan-based materials for solid-phase extraction of metal and metalloid ions prior to their determination by atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry, mass spectrometry, and some other spectrometric techniques. We show that nearly zero affinity of chitosan and its derivatives to alkali and alkali-earth metal ions is very beneficial for separation of analytes from the salt matrix, which is always present in natural waters, waste streams, and geological samples and interferes with analytical signals. Applicability of chitosan to selective recovery of different metal and metalloid ions can be significantly improved via functionalization with N-, S-, and O-containing groups imparting chitosan with additional electron donor atoms and capability to form stable five- and six-membered chelate rings with metal ions. Among most promising materials for analytical preconcentration, we discussed chitosan-based composites; carboxyalkyl chitosans; chitosan derivatives containing residues of aminoacids, iminodiacetic acid, ethylenediaminetetraacetic and diethylenetriaminepentaacetic acids; chitosans modified with aliphatic and aromatic amines, heterocyclic fragments (pyridyl, imidazole), and crown ethers. We have shown that most chitosan derivatives provide only group selectivity toward metal ions; however, optimization of recovery conditions allows metals and metalloids speciation and efficient separation of noble and transition metal ions.
Carbohydrate Polymers | 2015
Yu. A. Azarova; A. V. Pestov; A.Yu. Ustinov; S. Yu. Bratskaya
Chitosan and its N-heterocyclic derivatives N-2-(2-pyridyl)ethylchitosan (2-PEC), N-2-(4-pyridyl) ethylchitosan (4-PEC), and N-(5-methyl-4-imidazolyl) methylchitosan (IMC) have been applied in group preconcentration of gold, platinum, and palladium for subsequent determination by atomic absorption spectroscopy (AAS) in solutions with high background concentrations of iron and sodium ions. It has been shown that the sorption mechanism, which was elucidated by XPS, significantly influences the sorption capacity of materials, the efficiency of metal ions elution after preconcentration, and, as a result, the accuracy of metal determination by AAS. We have shown that native chitosan was not suitable for preconcentration of Au(III), if the elution step was used as a part of the analysis scheme. The group preconcentration of Au(III), Pd(II), and Pt(IV) with subsequent quantitative elution using 0.1M HCl/1M thiourea solution was possible only on IMC and 4-PEC. Application of IMC for analysis of the national standard quartz ore sample proved that gold could be accurately determined after preconcentration/elution with the recovery above 80%.
Journal of Sol-Gel Science and Technology | 2013
E. K. Papynov; V. Yu. Mayorov; Marina Palamarchuk; S. Yu. Bratskaya; V. A. Avramenko
Here we report on the sol–gel synthesis of porous inorganic materials based on manganese, molybdenum, and tungsten compounds using the “core–shell” siloxane-acrylate latex as a template. The chemical composition and structural characteristics of the materials obtained have been investigated. It was shown that temperature conditions and gaseous media composition during the template destruction controlled the composition and structure of porous materials. To obtain porous inorganic materials for catalytic applications, the “core–shell” latex template was preliminarily functionalized by gold and palladium nanoparticles obtained by thermal reduction of noble metal ions-precursors in a polycarboxylic “shell”. Upon the template removal, noble metals nanoparticles of a size of dozens of nanometers were homogeneously distributed in the material porous structure. The evaluation of the catalytic activity of macroporous manganese, tungsten, and molybdenum oxides under the conditions of liquid phase catalytic oxidation of organic dyes has been performed. The prospects of employing macroporous oxide systems with immobilized nanoparticles of noble metals in the processes of hydrothermal oxidation of radionuclide organic complexes in radioactive waste decontamination have been demonstrated.
Russian Journal of Applied Chemistry | 2014
A. V. Pestov; M. A. Ezhikova; M. I. Kodess; Yu. A. Azarova; S. Yu. Bratskaya
A procedure was developed for preparing a heterocycle-containing chelating amino polymer, N-(5-methylimidazol-4-ylmethyl) chitosan, by polymer-analogous transformations of chitosan in reaction with 4-chloromethyl-5-methylimidazole. The procedure allows synthesis of the polymer with the degree of substitution of up to 0.8, with simultaneous formation of the cross-linked structure. The structure of the polymers prepared was proved by IR and 13C NMR spectroscopy. The ability of N-(5-methylimidazol-4-ylmethyl) chitosan with the degree of substitution of 0.54 to sorb Cu2+ and Ni2+ ions was evaluated. According to the sorption isotherms, the sorption capacity of this derivative exceeds that of the unmodifi ed polymer by a factor of 5.
Geochemistry International | 2012
V. A. Avramenko; S. Yu. Bratskaya; A. S. Yakushevich; A.V. Voit; Vladimir V. Ivanov; Sergei Ivannikov
Brown coals with high Au and PGE concentrations from six deposits in the southern Russian Far East were analyzed for elemental composition, acid-base properties, and the molecular-size distribution of humic acids (HA). The ash contents of the coals were determined to be negatively correlated with their Au concentrations, and the content of “organic Au” (which is chemically bound to humic substances, HS) reaches 95%. The most probable mode of Au occurrence in the brown coals is submicrometer-sized particles of elemental gold stabilized by HA. Quantum-mechanical calculations of interactions between Au(0) clusters with model HS fragments confirm that HS could be originally strongly chemically adsorbed on the surface of elemental gold particles. Different stability of colloids during centrifuging of alkali extracts of the gold-bearing brown coals was proved to be likely responsible for the selective separation of free HA and those bound with gold particles, and this can be used to develop a technology for gold recovery from coals without decomposing their organic matrix.