S. Yu. Kleimenov
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. Yu. Kleimenov.
Biochemistry | 2007
A. V. Meremyanin; Tatyana B. Eronina; Natalia A. Chebotareva; S. Yu. Kleimenov; Igor K. Yudin; Konstantin O. Muranov; M. A. Ostrovsky; Boris I. Kurganov
Thermal aggregation of rabbit skeletal muscle glycogen phosphorylase b (Phb) has been investigated using dynamic light scattering under conditions of a constant rate of temperature increase (1 K/min). The linear behavior of the dependence of the hydrodynamic radius on temperature for Phb aggregation is consistent with the idea that the rmal aggregation of proteins proceeds in the kinetic regime where in the rate of aggregation is limited by diffusion of the interacting particles (the regime of “diffusion-limited cluster-cluster aggregation”). In the presence of α-crystallin, a prote in exhibiting chaperone-like activity, the dependence of the hydrodynamic radius on temperature follows the exponential law; this suggests that the aggregation process proceeds in the kinetic regime where the sticking probability for colliding particles becomes lower than unity (the regime of “reaction-limited cluster-cluster aggregation”). Based on analysis of the ratio between the light scattering intensity and the hydrodynamic radius of Phb aggregates, it has been concluded that the addition of α-crystallin results in formation of smaller size starting aggregates. The data on differential scanning calorimetry indicate that α-crystallin interacts with the intermediates of the unfolding process of the Phb molecule. The proposed scheme of the rmal denaturation and aggregation of Phb includes the stage of reversible dissociation of dimers of Phb into monomers, the stage of the formation of the starting aggregates from the denatured monomers of Phb, and the stage of the sticking of the starting aggregates and higher order aggregates. Dissociation of Phb dimer into monomers at elevated temperatures has been confirmed by analytical ultracentrifugation.
Biology Bulletin | 2003
I. G. Vladimirova; S. Yu. Kleimenov; L. I. Radzinskaya
On the basis of experimental and published data, the interspecific and intraspecific (ontogenetic) dependence of energy metabolism on body weight in bivalves was calculated. Changes in the parameters of intraspecific allometric dependence under the effect of environmental factors were analyzed. The rate of comparable standard metabolism (coefficient a at k = 0.76) was shown to vary in different taxonomic and zoogeographic groups of bivalves.
Applied Biochemistry and Microbiology | 2006
E. G. Sadykhov; A. E. Serov; N. S. Voinova; S. V. Uglanova; A. S. Petrov; A.A. Alekseeva; S. Yu. Kleimenov; Vladimir O. Popov; V. I. Tishkov
A comparative study of the thermostability of NAD+-dependent formate dehydrogenases (FDHs; EC 1.2.1.2) from both methylotrophic bacteria Pseudomonas sp. 101 and Moraxella sp. C1, the methane-utilizing yeast Candida boidinii, and plants Arabidopsis thaliana and Glycine max (soybean) was performed. All the enzymes studied were produced by expression in E. coli cells. The enzymes were irreversibly inactivated in one stage according to first-order reaction kinetics. The FDH from Pseudomonas sp. 101 appeared as the most thermostable enzyme; its counterpart from Glycine max exhibited the lowest stability. The enzymes from Moraxella sp. C1, C. boidinii, and Arabidopsis thaliana showed similar thermostability profiles. The temperature dependence of the inactivation rate constant of A. thaliana FDH was studied. The data of differential scanning calorimetry was complied with the experimental results on the inactivation kinetics of these enzymes. Values of the melting heat were determined for all the enzymes studied.
Microbiology | 2003
O. A. Gorelova; S. Yu. Kleimenov
Five different artificial associations of cyanobacterial cells with the cells or tissues of nightshade and rauwolfia were studied. The associations grown on nitrogen-containing media produced heterocysts. Cyanobacterial cells in the associations retained their ability to take up combined nitrogen from the medium, to store it in the form of cyanophycin granules, and to use them in the process of symbiotic growth. The synthesis and degradation of cyanophycin granules in cyanobacterial cells were more active in the associations than in monocultures. In the symbiotic associations of Chlorogloeopsis fritschii ATCC 27193 with Solanum laciniatum cells and of Nostoc muscorum CALU 304 with the Rauwolfia serpentina callus, heterocysts were produced with a 3- to 30-fold higher cyanophycin content than in pure cyanobacterial cultures. In contrast, in the association of N. muscorum CALU 304 with the Solanum dulcamara callus, heterocysts were produced with a lower cyanophycin content than in the N. muscorum CALU 304 pure culture. The degradation of cyanophycin granules in N. muscorum CALU 304 cells grown in associations with plant tissues or cells was subjected to mathematical analysis. The activation of cyanophycin degradation and heterocyst differentiation in the associations N. muscorum CALU 304–R. serpentinaand C.fritschii–S. laciniatum was accompanied by an enhanced synthesis of the nitrogen-containing alkaloids in plant cells. The data obtained suggest that an integrated system of nitrogen homeostasis can be formed in symbiotic associations. Depending on the growth stage of an association, its plant member can either stimulate the accumulation of combined nitrogen in vegetative cyanobacterial cells in the form of cyanophycin granules, activate their degradation, or initiate the formation of heterocysts independently of the cyanobacterial combined nitrogen deprivation sensing-signaling pathway.
Biochemistry | 2008
T. V. Tikhonova; E. S. Slutskaya; A. A. Filimonenkov; K. M. Boyko; S. Yu. Kleimenov; Petr V. Konarev; K. M. Polyakov; Dmitri I. Svergun; A. A. Trofimov; V. G. Khomenkov; R. A. Zvyagilskaya; Vladimir O. Popov
A new procedure for isolation of cytochrome c nitrite reductase from the haloalkaliphilic bacterium Thioalkalivibrio nitratireducens increasing significantly the yield of the purified enzyme is presented. The enzyme is isolated from the soluble fraction of the cell extract as a hexamer, as shown by gel filtration chromatography and small angle X-ray scattering analysis. Thermostability of the hexameric form of the nitrite reductase is characterized in terms of thermoinactivation and thermodenaturation.
Biology Bulletin | 2003
I. G. Vladimirova; S. Yu. Kleimenov; T. A. Alekseeva; L. I. Radzinskaya
Concordant changes in the level of energy metabolism and specific growth rate of axolotls have been revealed. Several periods of ontogeny are distinguished, which differ in the ratio of energy metabolism to body weight and, therefore, are described by different allometric equations. It is suggested that the specific growth rate of an animal determines the type of dependence of energy metabolism on body weight.
Biology Bulletin | 2013
A. A. Zotin; S. Yu. Kleimenov
On the basis of data on the growth of freshwater gastropods Lymnaea stagnalis, the dependence of the specific growth rate on age in the late postlarval ontogeny is calculated. The presence of two endogenous biorhythms of the specific growth rate with periods of 10.3 weeks and 6.5 weeks was revealed using singular spectrum analysis. Local maxima of both biorhythms in different individuals fall on the same age, and their periods are approximately the same in all animals studied and remain unchanged during individual postlarval development. The biorhythm with a period of 10.3 weeks is decaying, its amplitude is reduced from 3.2 year−1 (at the age of 10 weeks) to 0.8 year−1 (at the time of death of the shellfish). The biorhythm with a period of 6.5 weeks is nondecaying and has an average amplitude of 0.8 year−1.
Biochemistry | 2012
A.A. Alekseeva; S. S. Savin; S. Yu. Kleimenov; I. V. Uporov; E. V. Pometun; V. I. Tishkov
Recombinant formate dehydrogenase (FDH, EC 1.2.1.2) from soy Glycine max (SoyFDH) has the lowest values of Michaelis constants for formate and NAD+ among all studied formate dehydrogenases from different sources. Nevertheless, it also has the lower thermal stability compared to enzymes from bacteria and yeasts. The alignment of full sequences of FDHs from different sources as well as structure of apo- and holo-forms of SoyFDH has been analyzed. Ten mutant forms of SoyFDH were obtained by site-directed mutagenesis. All of them were purified to homogeneity and their thermal stability and substrate specificity were studied. Thermal stability was investigated by studying the inactivation kinetics at different temperatures and by differential scanning calorimetry (DSC). As a result, single-point (Ala267Met) and double mutants (Ala267Met/Ile272Val) were found to be more stable than the wild-type enzyme at high temperatures. The stabilization effect depends on temperature, and at 52°C it was 3.6- and 11-fold, respectively. These mutants also showed higher melting temperatures in DSC experiments — the differences in maxima of the melting curves (Tm) for the single and double mutants were 2.7 and 4.6°C, respectively. For mutations Leu24Asp and Val127Arg, the thermal stability at 52°C decreased 5- and 2.5-fold, respectively, and the Tm decreased by 3.5 and 1.7°C, respectively. There were no differences in thermal stability of six mutant forms of SoyFDH — Gly18Ala, Lys23Thr, Lys109Pro, Asn247Glu, Val281Ile, and Ser354Pro. Analysis of kinetic data showed that for the enzymes with mutations Val127Arg and Ala267Met the catalytic efficiency increased 1.7- and 2.3-fold, respectively.
Russian Journal of Developmental Biology | 2006
A. A. Zotin; S. Yu. Kleimenov
We studied the rate of oxygen consumption by the Lymnaea stagnalis embryos. The rate of oxygen consumption increased consistently during embryogenesis. The volume specific rate of oxygen consumption increased initially from the early cleavage stages until the gastrula stage and then decreased gradually to the eclosion of snails. There are three periods in embryogenesis of L. stagnalis, which differ in the coefficients of allometric dependence between the rate of oxygen consumption and volume of embryos: (1) early embryogenesis, when the increase in the rate of oxygen consumption is not accompanied by the growth of volume of the embryos; (2) larval period (trochophore and veliger stages; exponential coefficient k = 0.514), and (3) postlarval period (exponential coefficient k = 0.206).
Applied Biochemistry and Microbiology | 2011
N. M. Mestechkina; O. A. Bezborodova; A. V. Il’ina; A. N. Levov; S. Yu. Kleimenov; E. R. Nemtsova; R. I. Yakubovskaya; V. D. Shcherbukhin; V. P. Varlamov
The influence of neutral and ionic polysaccharides on the antioxidant (AOA) and detoxifying activities of lactoferrin (LF) and the duration of its circulation in the body was studied. In addition to natural polymers, we studied chitosan synthetic derivatives with different functional groups. On the basis of AOA test, five polysaccharides were selected. The study of the detoxifying effect of LF in two models of induced toxicity revealed polysaccharides that maintained or increased the detoxifying activity of LF. We established that the formation of a complex of lactoferrin with two galactomannans and succinyl chitosan caused positive changes in LF properties: the detoxifying activity of the protein remained unchanged or increased, whereas its elimination from the body was decelerated.