Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Zane is active.

Publication


Featured researches published by S. Zane.


Science | 2010

A Low-Magnetic-Field Soft Gamma Repeater

N. Rea; P. Esposito; R. Turolla; G. L. Israel; S. Zane; L. Stella; S. Mereghetti; A. Tiengo; Diego Gotz; Ersin Gogus; C. Kouveliotou

Odd Magnetar Magnetars are neutron stars that are widely thought to be powered by extremely high magnetic fields. Using data from three different x-ray observatories, Rea et al. (p. 944, published online 14 October) show that a previously known magnetar has a magnetic field that is much smaller than those of other magnetars. A strong magnetic field is thus not a necessary requirement for a neutron star to show magnetar-like behavior, implying that this population is wider than was previously thought. A neutron star lacking a strong magnetic field can still emit short bursts of high-energy radiation. Soft gamma repeaters (SGRs) and anomalous x-ray pulsars form a rapidly increasing group of x-ray sources exhibiting sporadic emission of short bursts. They are believed to be magnetars, that is, neutron stars powered by extreme magnetic fields, B ~ 1014 to 1015 gauss. We report on a soft gamma repeater with low magnetic field, SGR 0418+5729, recently detected after it emitted bursts similar to those of magnetars. X-ray observations show that its dipolar magnetic field cannot be greater than 7.5 × 1012 gauss, well in the range of ordinary radio pulsars, implying that a high surface dipolar magnetic field is not necessarily required for magnetar-like activity. The magnetar population may thus include objects with a wider range of B-field strengths, ages, and evolutionary stages than observed so far.


The Astrophysical Journal | 2012

A New Low Magnetic Field Magnetar: The 2011 Outburst of Swift J1822.3-1606

N. Rea; G. L. Israel; P. Esposito; José A. Pons; Ascension Camero-Arranz; R. P. Mignani; R. Turolla; S. Zane; M. Burgay; Andrea Possenti; Sergio Campana; Teru Enoto; Neil Gehrels; Ersin Gogus; Diego Gotz; C. Kouveliotou; Kazuo Makishima; S. Mereghetti; Sam R. Oates; David M. Palmer; Rosalba Perna; L. Stella; A. Tiengo

We report on the long-term X-ray monitoring withSwift,RXTE,Suzaku,Chandra, andXMM-Newton of the outburst of the newly discovered magnetar Swift J1822.3−1606 (SGR 1822−1606), from the first observations soon after the detection of the short X-ray bursts which led to its discovery, through the first stages of its outburst decay (covering the time span from 2011 July until the end of 2012 April). We also report on archival ROSAT observations which detected the source during its likely quiescent state, and on upper limits on Swift J1822.3−1606’s radiopulsed and optical emission during outburst, with the Green Bank Telescope and the Gran Telescopio Canarias, respectively. Our X-ray timing analysis finds the source rotating with a period of P = 8.43772016(2) s and a period derivative ˙ P = 8.3(2) × 10 −14 ss −1 , which implies an inferred dipolar surface magnetic field of B � 2.7 × 10 13 G at the equator. This measurement makes Swift J1822.3−1606 the second lowest magnetic field magnetar (after SGR 0418+5729). Following the flux and spectral evolution from the beginning of the outburst, we find that the flux decreased by about an order of magnitude, with a subtle softening of the spectrum, both typical of the outburst decay of magnetars. By modeling the secular thermal evolution of Swift J1822.3−1606, we find that the observed timing properties of the source, as well as its quiescent X-ray luminosity, can be reproduced if it was born with a poloidal and crustal toroidal fields of Bp ∼ 1.5 × 10 14 G and Btor ∼ 7 × 10 14 G, respectively, and if its current age


Monthly Notices of the Royal Astronomical Society | 2009

A statistical study of gamma-ray burst afterglows measured by the Swift Ultraviolet Optical Telescope

S. R. Oates; M. J. Page; Patricia Schady; M. De Pasquale; T. S. Koch; Alice A. Breeveld; Peter J. Brown; M. M. Chester; S. T. Holland; Erik Andrew Hoversten; N. P. M. Kuin; F. E. Marshall; P. W. A. Roming; Martin D. Still; D. E. Vanden Berk; S. Zane; John A. Nousek

We present the first statistical analysis of 27 Ultraviolet Optical Telescope (UVOT) optical/ultraviolet light curves of gamma-ray burst (GRB) afterglows. We have found, through analysis of the light curves in the observers frame, that a significant fraction rise in the first 500 s after the GRB trigger, all light curves decay after 500 s, typically as a power law with a relatively narrow distribution of decay indices, and the brightest optical afterglows tend to decay the quickest. We find that the rise could be either produced physically by the start of the forward shock, when the jet begins to plough into the external medium, or geometrically where an off-axis observer sees a rising light curve as an increasing amount of emission enters the observers line of sight, which occurs as the jet slows. We find that at 99.8 per cent confidence, there is a correlation, in the observed frame, between the apparent magnitude of the light curves at 400 s and the rate of decay after 500 s. However, in the rest frame, a Spearman rank test shows only a weak correlation of low statistical significance between luminosity and decay rate. A correlation should be expected if the afterglows were produced by off-axis jets, suggesting that the jet is viewed from within the half-opening angle. or within a core of a uniform energy density theta(c). We also produced logarithmic luminosity distributions for three rest-frame epochs. We find no evidence for bimodality in any of the distributions. Finally, we compare our sample of UVOT light curves with the X-ray Telescope (XRT) light-curve canonical model. The range in decay indices seen in UVOT light curves at any epoch is most similar to the range in decay of the shallow decay segment of the XRT canonical model. However, in the XRT canonical model, there is no indication of the rising behaviour observed in the UVOT light curves.


The Astrophysical Journal | 2008

RESONANT CYCLOTRON SCATTERING IN MAGNETARS' EMISSION

N. Rea; S. Zane; R. Turolla; Maxim Lyutikov; Diego Gotz

We present a systematic fit of a model of resonant cyclotron scattering (RCS) to the X-ray data of 10 magnetars, including canonical and transient anomalous X-ray pulsars (AXPs) and soft gamma repeaters (SGRs). In this scenario, nonthermal magnetar spectra in the soft X-rays (i.e., below ~10 keV) result from resonant cyclotron scattering of the thermal surface emission by hot magnetospheric plasma. We find that this model can successfully account for the soft X-ray emission of magnetars, while using the same number of free parameters as in the commonly used empirical blackbody plus power-law model. However, while the RCS model can alone reproduce the soft X-ray spectra of AXPs, the much harder spectra of SGRs below 10 keV require the addition of a power-law component (the latter being the same component responsible for their hard X-ray emission). Although this model in its present form does not explain the hard X-ray emission (i.e., above ~20 keV) of a few of these sources, we took this further component into account in our modeling not to overlook its contribution in the ~4-10 keV band. We find that the entire class of sources is characterized by magnetospheric plasma with a density which, at resonant radius, is about 3 orders of magnitude higher than the Goldreich-Julian electron density. The inferred values of the intervening hydrogen column densities are also in better agreement with more recent estimates. Although the treatment of the magnetospheric scattering used here is only approximated, its successful application to all magnetars shows that the RCS model is capable of catching the main features of the spectra observed below ~10 keV.


The Astrophysical Journal | 2001

Proton cyclotron features in thermal spectra of ultramagnetized neutron stars

S. Zane; Roberto Turolla; L. Stella; A. Treves

A great deal of interest has been recently raised in connection with the possibility that soft γ-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) contain magnetars, young neutron stars endowed with magnetic fields 1014 G. In this paper we calculate thermal spectra from ultramagnetized neutron stars for values of the luminosity and magnetic field believed to be relevant to SGRs and AXPs. Emergent spectra are found to be very close to a blackbody at the star effective temperature and exhibit a distinctive absorption feature at the proton cyclotron energy Ec,p 0.63(B/1014 G) keV. The proton cyclotron features (PCFs) are conspicuous (equivalent width of up to many hundreds eV) and relatively broad (ΔE/E ~ 0.05-0.2). The detection of the PCFs is well within the capabilities of present X-ray spectrometers, like the HETGS and METGS on board Chandra. Their observation might provide decisive evidence in favor of the existence of magnetars.


Experimental Astronomy | 2013

XIPE: the X-ray imaging polarimetry explorer

Paolo Soffitta; X. Barcons; R. Bellazzini; Joao Braga; Enrico Costa; George W. Fraser; Szymon Gburek; J. Huovelin; Giorgio Matt; M. Pearce; Juri Poutanen; V. Reglero; A. Santangelo; R. Sunyaev; Gianpiero Tagliaferri; Martin C. Weisskopf; Roberto Aloisio; E. Amato; Primo Attinà; Magnus Axelsson; L. Baldini; S. Basso; Stefano Bianchi; Pasquale Blasi; J. Bregeon; Alessandro Brez; N. Bucciantini; L. Burderi; Vadim Burwitz; P. Casella

Abstract X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017. The proposal was, unfortunately, not selected. To be compliant with this schedule, we designed the payload mostly with existing items. The XIPE proposal takes advantage of the completed phase A of POLARIX for an ASI small mission program that was cancelled, but is different in many aspects: the detectors, the presence of a solar flare polarimeter and photometer and the use of a light platform derived by a mass production for a cluster of satellites. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus. Two additional GPDs filled with a 3-bar Ar-DME mixture always face the Sun to detect polarization from solar flares. The Minimum Detectable Polarization of a 1 mCrab source reaches 14 % in the 2–10 keV band in 105 s for pointed observations, and 0.6 % for an X10 class solar flare in the 15–35 keV energy band. The imaging capability is 24 arcsec Half Energy Width (HEW) in a Field of View of 14.7 arcmin × 14.7 arcmin. The spectral resolution is 20 % at 6 keV and the time resolution is 8 μs. The imaging capabilities of the JET-X optics and of the GPD have been demonstrated by a recent calibration campaign at PANTER X-ray test facility of the Max-Planck-Institut für extraterrestrische Physik (MPE, Germany). XIPE takes advantage of a low-earth equatorial orbit with Malindi as down-link station and of a Mission Operation Center (MOC) at INPE (Brazil). The data policy is organized with a Core Program that comprises three months of Science Verification Phase and 25 % of net observing time in the following 2 years. A competitive Guest Observer program covers the remaining 75 % of the net observing time.


The Astrophysical Journal | 2005

AN XMM-NEWTON VIEW OF THE SOFT GAMMA REPEATER SGR 1806-20: LONG-TERM VARIABILITY IN THE PRE-GIANT FLARE EPOCH

S. Mereghetti; A. Tiengo; P. Esposito; Diego Gotz; L. Stella; G. L. Israel; N. Rea; M. Feroci; Roberto Turolla; S. Zane

The low-energy (<10 keV) X-ray emission of the soft gamma repeater SGR 1806-20 has been studied by means of four XMM-Newton observations carried out in the last two years, the latest performed in response to a strong sequence of hard X-ray bursts observed on 2004 October 5. The source was caught in different states of activity; over the 2003-2004 period, the 2-10 keV flux doubled with respect to the historical level observed previously. The long-term rise in luminosity was accompanied by a gradual hardening of the spectrum, with the power-law photon index decreasing from 2.2 to 1.5, and by a growth of the bursting activity. The pulse period measurements obtained in the four observations are consistent with an average spin-down rate of 5.5 × 10-10 s s-1, higher than the values observed in the previous years. The long-term behavior of SGR 1806-20 exhibits the correlation between spectral hardness and spin-down rate previously found only by comparing the properties of different sources (both SGRs and anomalous X-ray pulsars [AXPs]). The best-quality spectrum (obtained on 2004 September 6) cannot be fitted by a single power law but requires an additional blackbody component [kTBB = 0.79 keV, RBB = 1.9 (d/15 kpc)2 km], similar to the spectra observed in other SGRs and AXPs. No spectral lines were found in the persistent emission, with equivalent width upper limits in the range 30-110 eV. Marginal evidence for an absorption feature at 4.2 keV is present in the cumulative spectrum of 69 bursts detected in 2004 September-October.


Monthly Notices of the Royal Astronomical Society | 2009

The first outburst of the new magnetar candidate SGR 0501+4516

N. Rea; G. L. Israel; R. Turolla; P. Esposito; S. Mereghetti; Diego Gotz; S. Zane; A. Tiengo; K. Hurley; M. Feroci; Martin D. Still; V. Yershov; C. Winkler; Rosalba Perna; F. Bernardini; P. Ubertini; L. Stella; Sergio Campana; M. van der Klis; Paul M. Woods

We report here on the outburst onset and evolution of the new soft gamma-ray repeater SGR 0501+4516. We monitored the new SGR with XMM- Newton starting on 2008 August 23, 1 day after the source became burst active, and continuing with four more observations in the following month, with the last one on 2008 September 30. Combining the data with the Swift X-ray telescope (Swift-XRT) and Suzaku data, we modelled the outburst decay over a 3-month period, and we found that the source flux decreased exponentially with a time-scale of t(c) = 23.8 d. In the first XMM-Newton observation, a large number of short X-ray bursts were observed, the rate of which decayed drastically in the following observations. We found large changes in the spectral and timing behaviour of the source during the first month of the outburst decay, with softening emission as the flux decayed, and the non-thermal soft X-ray spectral component fading faster than the thermal one. Almost simultaneously to our second and fourth XMM-Newton observations (on 2008 August 29 and September 2), we observed the source in the hard X-ray range with INTEGRAL, which clearly detected the source up to similar to 100 keV in the first pointing, while giving only upper limits during the second pointing, discovering a variable hard X-ray component fading in less than 10 days after the bursting activation. We performed a phase-coherent X-ray timing analysis over about 160 days starting with the burst activation and found evidence of a strong second derivative period component [(sic) = -1.6(4) x 10(-19) s s(-2)]. Thanks to the phase connection, we were able to study the phase-resolved spectral evolution of SGR 0501+ 4516 in great detail. We also report on the ROSAT quiescent source data, taken back in 1992 when the source exhibits a flux similar to 80 times lower than that measured during the outburst, and a rather soft, thermal spectrum.


Nature | 2013

A variable absorption feature in the X-ray spectrum of a magnetar

A. Tiengo; P. Esposito; S. Mereghetti; Roberto Turolla; Luciano Nobili; F. Gastaldello; Diego Gotz; G. L. Israel; N. Rea; L. Stella; S. Zane; G. F. Bignami

Soft-γ-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are slowly rotating, isolated neutron stars that sporadically undergo episodes of long-term flux enhancement (outbursts) generally accompanied by the emission of short bursts of hard X-rays. This behaviour can be understood in the magnetar model, according to which these sources are mainly powered by their own magnetic energy. This is supported by the fact that the magnetic fields inferred from several observed properties of SGRs and AXPs are greater than—or at the high end of the range of—those of radio pulsars. In the peculiar case of SGR 0418+5729, a weak dipole magnetic moment is derived from its timing parameters, whereas a strong field has been proposed to reside in the stellar interior and in multipole components on the surface. Here we show that the X-ray spectrum of SGR 0418+5729 has an absorption line, the properties of which depend strongly on the star’s rotational phase. This line is interpreted as a proton cyclotron feature and its energy implies a magnetic field ranging from 2 × 1014 gauss to more than 1015 gauss.


The Astrophysical Journal | 2013

THE OUTBURST DECAY OF THE LOW MAGNETIC FIELD MAGNETAR SGR 0418+5729

N. Rea; G. L. Israel; José A. Pons; R. Turolla; Daniele Viganò; S. Zane; P. Esposito; Rosalba Perna; A. Papitto; G. Terreran; A. Tiengo; D. Salvetti; Josep M. Girart; Aina Palau; A. Possenti; M. Burgay; Ersin Gogus; G. A. Caliandro; C. Kouveliotou; Diego Gotz; R. P. Mignani; E. M. Ratti; L. Stella

N.R. is supported by a Ramon y Cajal Research Fellowship, and by grants AYA2009-07391, AYA2012-39303, SGR2009-811, TW2010005, and iLINK 2011-0303. J.A.P. and D.V. acknowledge support from the grants AYA 2010-21097-C03-02 and Prometeo/2009/103. R.T. and S.M. are partially funded through an INAF 2011 PRIN grant. A.P. is supported by a JAE-Doc CSIC fellowship co-funded with the European Social Fund under the program “Junta para la Ampliacion de Estudios,” by the Spanish MICINN grant AYA2011-30228-C03-02 (co-funded with FEDER funds), and by the AGAUR grant 2009SGR1172 (Catalonia).

Collaboration


Dive into the S. Zane's collaboration.

Top Co-Authors

Avatar

R. Turolla

University College London

View shared research outputs
Top Co-Authors

Avatar

P. Esposito

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

N. Rea

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. Gehrels

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge