Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Saadia A. Karim is active.

Publication


Featured researches published by Saadia A. Karim.


Cell | 2009

Mutant p53 Drives Invasion by Promoting Integrin Recycling

Patricia A. J. Muller; Patrick T. Caswell; Brendan Doyle; Marcin P. Iwanicki; Ee H. Tan; Saadia A. Karim; Natalia Lukashchuk; David A. Gillespie; Robert L. Ludwig; Pauline Gosselin; Anne Cromer; Joan S. Brugge; Owen J. Sansom; Jim C. Norman; Karen H. Vousden

p53 is a tumor suppressor protein whose function is frequently lost in cancers through missense mutations within the Tp53 gene. This results in the expression of point-mutated p53 proteins that have both lost wild-type tumor suppressor activity and show gain of functions that contribute to transformation and metastasis. Here, we show that mutant p53 expression can promote invasion, loss of directionality of migration, and metastatic behavior. These activities of p53 reflect enhanced integrin and epidermal growth factor receptor (EGFR) trafficking, which depends on Rab-coupling protein (RCP) and results in constitutive activation of EGFR/integrin signaling. We provide evidence that mutant p53 promotes cell invasion via the inhibition of TAp63, and simultaneous loss of p53 and TAp63 recapitulates the phenotype of mutant p53 in cells. These findings open the possibility that blocking alpha5/beta1-integrin and/or the EGF receptor will have therapeutic benefit in mutant p53-expressing cancers.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer

Jennifer P. Morton; Paul Timpson; Saadia A. Karim; Rachel A. Ridgway; Dimitris Athineos; Brendan Doyle; Nigel B. Jamieson; Karin A. Oien; Andrew M. Lowy; Valerie G. Brunton; Margaret C. Frame; T.R. Jeffry Evans; Owen J. Sansom

TP53 mutation occurs in 50–75% of human pancreatic ductal adenocarcinomas (PDAC) following an initiating activating mutation in the KRAS gene. These p53 mutations frequently result in expression of a stable protein, p53R175H, rather than complete loss of protein expression. In this study we elucidate the functions of mutant p53 (Trp53R172H), compared to knockout p53 (Trp53fl), in a mouse model of PDAC. First we find that although KrasG12D is one of the major oncogenic drivers of PDAC, most KrasG12D-expressing pancreatic cells are selectively lost from the tissue, and those that remain form premalignant lesions. Loss, or mutation, of Trp53 allows retention of the KrasG12D-expressing cells and drives rapid progression of these premalignant lesions to PDAC. This progression is consistent with failed growth arrest and/or senescence of premalignant lesions, since a mutant of p53, p53R172P, which can still induce p21 and cell cycle arrest, is resistant to PDAC formation. Second, we find that despite similar kinetics of primary tumor formation, mutant p53R172H, as compared with genetic loss of p53, specifically promotes metastasis. Moreover, only mutant p53R172H-expressing tumor cells exhibit invasive activity in an in vitro assay. Importantly, in human PDAC, p53 accumulation significantly correlates with lymph node metastasis. In summary, by using ‘knock-in’ mutations of Trp53 we have identified two critical acquired functions of a stably expressed mutant form of p53 that drive PDAC; first, an escape from KrasG12D-induced senescence/growth arrest and second, the promotion of metastasis.


Nature | 2014

Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles

Susanne Walz; Francesca Lorenzin; Jennifer P. Morton; Katrin E. Wiese; Björn von Eyss; Steffi Herold; Lukas Rycak; Hélène Dumay-Odelot; Saadia A. Karim; Marek Bartkuhn; Frederik Roels; Torsten Wüstefeld; Matthias Fischer; Martin Teichmann; Lars Zender; Chia-Lin Wei; Owen J. Sansom; Elmar Wolf; Martin Eilers

In mammalian cells, the MYC oncoprotein binds to thousands of promoters. During mitogenic stimulation of primary lymphocytes, MYC promotes an increase in the expression of virtually all genes. In contrast, MYC-driven tumour cells differ from normal cells in the expression of specific sets of up- and downregulated genes that have considerable prognostic value. To understand this discrepancy, we studied the consequences of inducible expression and depletion of MYC in human cells and murine tumour models. Changes in MYC levels activate and repress specific sets of direct target genes that are characteristic of MYC-transformed tumour cells. Three factors account for this specificity. First, the magnitude of response parallels the change in occupancy by MYC at each promoter. Functionally distinct classes of target genes differ in the E-box sequence bound by MYC, suggesting that different cellular responses to physiological and oncogenic MYC levels are controlled by promoter affinity. Second, MYC both positively and negatively affects transcription initiation independent of its effect on transcriptional elongation. Third, complex formation with MIZ1 (also known as ZBTB17) mediates repression of multiple target genes by MYC and the ratio of MYC and MIZ1 bound to each promoter correlates with the direction of response.


Nature | 2015

mTORC1 mediated translational elongation limits intestinal tumour initiation and growth

William J. Faller; Thomas J. Jackson; John R. P. Knight; Rachel A. Ridgway; Thomas Jamieson; Saadia A. Karim; Carolyn Jones; Sorina Radulescu; David J. Huels; Kevin Myant; Kate Dudek; Helen A. Casey; Alessandro Scopelliti; Julia B. Cordero; Marcos Vidal; Mario Pende; Alexey G. Ryazanov; Nahum Sonenberg; Oded Meyuhas; Michael N. Hall; Martin Bushell; Anne E. Willis; Owen J. Sansom

Inactivation of APC is a strongly predisposing event in the development of colorectal cancer, prompting the search for vulnerabilities specific to cells that have lost APC function. Signalling through the mTOR pathway is known to be required for epithelial cell proliferation and tumour growth, and the current paradigm suggests that a critical function of mTOR activity is to upregulate translational initiation through phosphorylation of 4EBP1 (refs 6, 7). This model predicts that the mTOR inhibitor rapamycin, which does not efficiently inhibit 4EBP1 (ref. 8), would be ineffective in limiting cancer progression in APC-deficient lesions. Here we show in mice that mTOR complex 1 (mTORC1) activity is absolutely required for the proliferation of Apc-deficient (but not wild-type) enterocytes, revealing an unexpected opportunity for therapeutic intervention. Although APC-deficient cells show the expected increases in protein synthesis, our study reveals that it is translation elongation, and not initiation, which is the rate-limiting component. Mechanistically, mTORC1-mediated inhibition of eEF2 kinase is required for the proliferation of APC-deficient cells. Importantly, treatment of established APC-deficient adenomas with rapamycin (which can target eEF2 through the mTORC1–S6K–eEF2K axis) causes tumour cells to undergo growth arrest and differentiation. Taken together, our data suggest that inhibition of translation elongation using existing, clinically approved drugs, such as the rapalogs, would provide clear therapeutic benefit for patients at high risk of developing colorectal cancer.


Oncogene | 2013

Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion

Patricia A. J. Muller; Antonio García Trinidad; Paul Timpson; Jennifer P. Morton; Sara Zanivan; P V E van den Berghe; C L Nixon; Saadia A. Karim; Patrick T. Caswell; Jacqueline E. Noll; Cynthia R. Coffill; David P. Lane; Owen J. Sansom; Paul M. Neilsen; Jim C. Norman; Karen H. Vousden

Tumour-derived mutant p53 proteins promote invasion, in part, by enhancing Rab coupling protein (RCP)-dependent receptor recycling. Here we identified MET as an RCP-binding protein and showed that mutant p53 promoted MET recycling. Mutant p53-expressing cells were more sensitive to hepatocyte growth factor, the ligand for MET, leading to enhanced MET signalling, invasion and cell scattering that was dependent on both MET and RCP. In cells expressing the p53 family member TAp63, inhibition of TAp63 also lead to cell scattering and MET-dependent invasion. However, in cells that express very low levels of TAp63, the ability of mutant p53 to promote MET-dependent cell scattering was independent of TAp63. Taken together, our data show that mutant p53 can enhance MET signalling to promote cell scattering and invasion through both TAp63-dependent and -independent mechanisms. MET has a predominant role in metastatic progression and the identification of mechanisms through which mutations in p53 can drive MET signalling may help to identify and direct therapy.


Cancer Cell | 2016

CXCR2 Inhibition Profoundly Suppresses Metastases and Augments Immunotherapy in Pancreatic Ductal Adenocarcinoma.

Colin W. Steele; Saadia A. Karim; Joshua Leach; Peter Bailey; Rosanna Upstill-Goddard; Loveena Rishi; Mona Foth; Sheila Bryson; Karen McDaid; Zena Wilson; Catherine Eberlein; Juliana Candido; Mairi Clarke; Colin Nixon; John T. Connelly; Nigel B. Jamieson; C. Ross Carter; Frances R. Balkwill; David K. Chang; T.R. Jeffry Evans; Douglas Strathdee; Andrew V. Biankin; Robert J. B. Nibbs; Simon T. Barry; Owen J. Sansom; Jennifer P. Morton

Summary CXCR2 has been suggested to have both tumor-promoting and tumor-suppressive properties. Here we show that CXCR2 signaling is upregulated in human pancreatic cancer, predominantly in neutrophil/myeloid-derived suppressor cells, but rarely in tumor cells. Genetic ablation or inhibition of CXCR2 abrogated metastasis, but only inhibition slowed tumorigenesis. Depletion of neutrophils/myeloid-derived suppressor cells also suppressed metastasis suggesting a key role for CXCR2 in establishing and maintaining the metastatic niche. Importantly, loss or inhibition of CXCR2 improved T cell entry, and combined inhibition of CXCR2 and PD1 in mice with established disease significantly extended survival. We show that CXCR2 signaling in the myeloid compartment can promote pancreatic tumorigenesis and is required for pancreatic cancer metastasis, making it an excellent therapeutic target.


Gastroenterology | 2010

LKB1 Haploinsufficiency Cooperates With Kras to Promote Pancreatic Cancer Through Suppression of p21-Dependent Growth Arrest

Jennifer P. Morton; Nigel B. Jamieson; Saadia A. Karim; Dimitris Athineos; Rachel A. Ridgway; Colin Nixon; Colin J. McKay; Ross Carter; Valerie G. Brunton; Margaret C. Frame; Alan Ashworth; Karin A. Oien; T.R. Jeffry Evans; Owen J. Sansom

Background & Aims Patients carrying germline mutations of LKB1 have an increased risk of pancreatic cancer; however, it is unclear whether down-regulation of LKB1 is an important event in sporadic pancreatic cancer. In this study, we aimed to investigate the impact of LKB1 down-regulation for pancreatic cancer in mouse and human and to elucidate the mechanism by which Lkb1 deregulation contributes to this disease. Methods We first investigated the consequences of Lkb1 deficiency in a genetically modified mouse model of pancreatic cancer, both in terms of disease progression and at the molecular level. To test the relevance of our findings to human pancreatic cancer, we investigated levels of LKB1 and its potential targets in human pancreatic cancer. Results We definitively show that Lkb1 haploinsufficiency can cooperate with oncogenic KrasG12D to cause pancreatic ductal adenocarcinoma (PDAC) in the mouse. Mechanistically, this was associated with decreased p53/p21-dependent growth arrest. Haploinsufficiency for p21 (Cdkn1a) also synergizes with KrasG12D to drive PDAC in the mouse. We also found that levels of LKB1 expression were decreased in around 20% of human PDAC and significantly correlated with low levels of p21 and a poor prognosis. Remarkably, all tumors that had low levels of LKB1 had low levels of p21, and these tumors did not express mutant p53. Conclusions We have identified a novel LKB1-p21 axis that suppresses PDAC following Kras mutation in vivo. Down-regulation of LKB1 may therefore serve as an alternative to p53 mutation to drive pancreatic cancer in vivo.


Cancer Research | 2011

Spatial regulation of RhoA activity during pancreatic cancer cell invasion driven by mutant p53

Paul Timpson; Ewan J. McGhee; Jennifer P. Morton; Alex von Kriegsheim; Juliane P. Schwarz; Saadia A. Karim; Brendan Doyle; John A. Quinn; Neil O. Carragher; M. Edward; Michael F. Olson; Margaret C. Frame; Valerie G. Brunton; Owen J. Sansom; Kurt I. Anderson

The ability to observe changes in molecular behavior during cancer cell invasion in vivo remains a major challenge to our understanding of the metastatic process. Here, we demonstrate for the first time, an analysis of RhoA activity at a subcellular level using FLIM-FRET (fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer) imaging in a live animal model of pancreatic cancer. In invasive mouse pancreatic ductal adenocarcinoma (PDAC) cells driven by mutant p53 (p53(R172H)), we observed a discrete fraction of high RhoA activity at both the leading edge and rear of cells in vivo which was absent in two-dimensional in vitro cultures. Notably, this pool of active RhoA was absent in noninvasive p53(fl) knockout PDAC cells, correlating with their poor invasive potential in vivo. We used dasatanib, a clinically approved anti-invasive agent that is active in this model, to illustrate the functional importance of spatially regulated RhoA. Dasatanib inhibited the activity of RhoA at the poles of p53(R172H) cells in vivo and this effect was independent of basal RhoA activity within the cell body. Taken together, quantitative in vivo fluorescence lifetime imaging illustrated that RhoA is not only necessary for invasion, but also that subcellular spatial regulation of RhoA activity, as opposed to its global activity, is likely to govern invasion efficiency in vivo. Our findings reveal the utility of FLIM-FRET in analyzing dynamic biomarkers during drug treatment in living animals, and they also show how discrete intracellular molecular pools might be differentially manipulated by future anti-invasive therapies.


Gastroenterology | 2010

Dasatinib Inhibits the Development of Metastases in a Mouse Model of Pancreatic Ductal Adenocarcinoma

Jennifer P. Morton; Saadia A. Karim; Kathryn Graham; Paul Timpson; Nigel B. Jamieson; Dimitris Athineos; Brendan Doyle; Colin J. McKay; Man–Yeung Heung; Karin A. Oien; Margaret C. Frame; T.R. Jeffry Evans; Owen J. Sansom; Valerie G. Brunton

BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) is a highly invasive and metastatic disease for which conventional treatments are of limited efficacy. A number of agents in development are potential anti-invasive and antimetastatic agents, including the Src kinase inhibitor dasatinib. The aim of this study was to assess the importance of Src in human PDAC and to use a genetically engineered mouse model of PDAC to determine the effects of dasatinib on PDAC progression. METHODS Src expression and activity was measured by immunohistochemistry in 114 human PDACs. Targeting expression of Trp53(R172H) and Kras(G12D) to the mouse pancreas results in the formation of invasive and metastatic PDAC. These mice were treated with dasatinib, and disease progression monitored. Cell lines were derived from mouse PDACs, and in vitro effects of dasatinib assessed. RESULTS Src expression and activity were up-regulated in human PDAC and this correlated with reduced survival. Dasatinib inhibited the migration and invasion of PDAC cell lines, although no effects on proliferation were seen at concentrations that inhibited Src kinase activity. In addition, dasatinib significantly inhibited the development of metastases in Pdx1-Cre, Z/EGFP, LSL-Kras(G12D/+), LSL-Trp53(R172H/+) mice. However, there was no survival advantage in the dasatinib-treated animals owing to continued growth of the primary tumor. CONCLUSIONS This study confirms the importance of Src in human PDAC and shows the usefulness of a genetically engineered mouse model of PDAC for assessing the activity of potential antimetastatic agents and suggests that dasatinib should be evaluated further as monotherapy after resection of localized invasive PDAC.


Cancer Research | 2013

Intravital FLIM-FRET Imaging Reveals Dasatinib-Induced Spatial Control of Src in Pancreatic Cancer

Max Nobis; Ewan J. McGhee; Jennifer P. Morton; Juliane P. Schwarz; Saadia A. Karim; John A. Quinn; M. Edward; Andrew D. Campbell; Lynn McGarry; T.R. Jeffry Evans; Valerie G. Brunton; Margaret C. Frame; Neil O. Carragher; Yingxiao Wang; Owen J. Sansom; Paul Timpson; Kurt I. Anderson

Cancer invasion and metastasis occur in a complex three-dimensional (3D) environment, with reciprocal feedback from the surrounding host tissue and vasculature-governing behavior. In this study, we used a novel intravital method that revealed spatiotemporal regulation of Src activity in response to the anti-invasive Src inhibitor dasatinib. A fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer (FLIM-FRET) Src biosensor was used to monitor drug-targeting efficacy in a transgenic p53-mutant mouse model of pancreatic cancer. In contrast to conventional techniques, FLIM-FRET analysis allowed for accurate, time-dependent, live monitoring of drug efficacy and clearance in live tumors. In 3D organotypic cultures, we showed that a spatially distinct gradient of Src activity exists within invading tumor cells, governed by the depth of penetration into complex matrices. In parallel, this gradient was also found to exist within live tumors, where Src activity is enhanced at the invasive border relative to the tumor cortex. Upon treatment with dasatinib, we observed a switch in activity at the invasive borders, correlating with impaired metastatic capacity in vivo. Src regulation was governed by the proximity of cells to the host vasculature, as cells distal to the vasculature were regulated differentially in response to drug treatment compared with cells proximal to the vasculature. Overall, our results in live tumors revealed that a threshold of drug penetrance exists in vivo and that this can be used to map areas of poor drug-targeting efficiency within specific tumor microenvironments. We propose that using FLIM-FRET in this capacity could provide a useful preclinical tool in animal models before clinical translation.

Collaboration


Dive into the Saadia A. Karim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Timpson

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge