Saadia A. Tayel
Cairo University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Saadia A. Tayel.
International Journal of Pharmaceutics | 2013
Shahinaze A. Fouad; Emad B. Basalious; Mohamed Ahmed El-Nabarawi; Saadia A. Tayel
Microemulsion (ME) and poloxamer microemulsion-based gel (PMBG) were developed and optimized to enhance transport of diclofenac epolamine (DE) into the skin forming in-skin drug depot for sustained transdermal delivery of drug. D-optimal mixture experimental design was applied to optimize ME that contains maximum amount of oil, minimum globule size and optimum drug solubility. Three formulation variables; the oil phase X1 (Capryol(®)), Smix X2 (a mixture of Labrasol(®)/Transcutol(®), 1:2 w/w) and water X3 were included in the design. The systems were assessed for drug solubility, globule size and light absorbance. Following optimization, the values of formulation components (X1, X2, and X3) were 30%, 50% and 20%, respectively. The optimized ME and PMBG were assessed for pH, drug content, skin irritation, stability studies and ex vivo transport in rat skin. Contrary to PMBG and Flector(®) gel, the optimized ME showed the highest cumulative amount of DE permeated after 8h and the in vivo anti-inflammatory efficacy in rat paw edema was sustained to 12h after removal of ME applied to the skin confirming the formation of in-skin drug depot. Our results proposed that topical ME formulation, containing higher fraction of oil solubilized drug, could be promising for sustained transdermal delivery of drug.
International Journal of Pharmaceutics | 2013
Saadia A. Tayel; Mohamed Ahmed El-Nabarawi; Mina Ibrahim Tadros; Wessam Hamdy Abd-Elsalam
Terbinafine hydrochloride (T-HCl) is recommended for the management of fungal keratitis. To maintain effective aqueous humor concentrations, frequent instillation of T-HCl drops is necessary. This work aimed to develop alternative controlled-release in situ ocular drug-loaded nanoemulsion (NE) gels. Twelve pseudoternary-phase diagrams were constructed using oils (isopropyl myristate/Miglyol 812), surfactants (Tween 80/Cremophor EL), a co-surfactant (polyethylene glycol 400) and water. Eight drug-loaded (0.5%, w/v) NEs were evaluated for thermodynamic stability, morphology, droplet size and drug release in simulated tear fluid (pH 7.4). Following dispersion in gellan gum solution (0.2%, w/w), the in situ NE gels were characterized for transparency, rheological behavior, mucoadhesive force, drug release and histopathological assessment of ocular irritation. Drug pharmacokinetics of sterilized F31 [Miglyol 812, Cremophor EL: polyethylene glycol 400 (1:2) and water (5, 55 and 40%, w/w, respectively)] in situ NE gel and oily drug solution were evaluated in rabbit aqueous humor. The NEs were thermodynamically stable and have spherical droplets (<30 nm). The gels were transparent, pseudoplastic, mucoadhesive and showed more retarded zero-order drug release rates. F31 in situ NE gel showed the least ocular irritation potential and significantly (P<0.01) higher C(max), delayed T(max), prolonged mean residence time and increased bioavailability.
Aaps Pharmscitech | 2010
Saadia A. Tayel; Iman I. Soliman; Dina Louis
The purpose of this study was to prepare sublingual tablets, containing the antiasthmatic drug ketotifen fumarate which suffers an extensive first-pass effect, using the fast-melt granulation technique. The powder mixtures containing the drug were agglomerated using a blend of polyethylene glycol 400 and 6000 as meltable hydrophilic binders. Granular mannitol or granular mannitol/sucrose mixture were used as fillers. A mechanical mixer was used to prepare the granules at 40°C. The method involved no water or organic solvents, which are used in conventional granulation, and hence no drying step was included, which saved time. Twelve formulations were prepared and characterized using official and non official tests. Three formulations showed the best results and were subjected to an ex vivo permeation study using excised chicken cheek pouches. The formulation F4I possessed the highest permeation coefficient due to the presence of the permeation enhancer (polyethylene glycol) in an amount which allowed maximum drug permeation, and was subjected to a pharmacokinetic study using rabbits as an animal model. The bioavailability of F4I was significantly higher than that of a commercially available dosage form (Zaditen® solution-Novartis Pharma-Egypt) (p > 0.05). Thus, fast-melt granulation allowed for rapid tablet disintegration and an enhanced permeation of the drug through the sublingual mucosa, resulting in increased bioavailabililty.
International Journal of Pharmaceutics | 2015
Saadia A. Tayel; Mohamed Ahmed El-Nabarawi; Mina Ibrahim Tadros; Wessam Hamdy Abd-Elsalam
Pravastatin sodium (PVS) is a hydrophilic HMG-CoA reductase inhibitor that is mainly absorbed from duodenum. PVS has a short elimination half-life (1-3 h), suffers from instability at gastric pH, extensive hepatic first-pass metabolism and low absolute bioavailability (18%). The current work aimed to develop enteric surface-coated spanlastic dispersions as controlled-release duodenum-triggered systems able to surmount PVS drawbacks. PVS-loaded spanlastic dispersions were prepared by ethanol-injection method using span(®) 60. Tween(®) 60 and Tween(®) 80 were explored as edge activators. As a novel approach, the fine spanlastic dispersions were surface-coated with an enteric-polymer (Eudragit(®) L100-55) via freeze-drying. The systems were evaluated, before and after enteric-coating, for particle size, zeta potential, PVS entrapment efficiency (EE%), morphology and PVS release studies. PVS pharmacokinetics from the best achieved system and an aqueous solution were estimated in rats by UPLC-MS/MS. The best achieved enteric surface-coated spanlastic dispersion (E-S6) displayed spherical nanosized vesicles (647.60 nm) possessing negative zeta potential (-6.93 mV), promising EE% (63.22%) and a biphasic drug-release pattern characterized by a retarded-release phase (0.1 N HCl, 2 h) and a controlled-release phase (pH 6.8, 10 h). The higher Cmax, delayed Tmax, prolonged MRT(0-∞), longer elimination t50% and enhanced oral bioavailability unravel E-S6 potential for oral PVS delivery.
International Journal of Pharmaceutics | 2016
Shahinaze A. Fouad; Rehab N. Shamma; Emad B. Basalious; Mohamed Ahmed El-Nabarawi; Saadia A. Tayel
Dapoxetine (D) suffers from poor oral bioavailability (42%) due to extensive first pass metabolism. The usefulness of transmucosal (sublingual and intranasal) drug delivery to improve bioavailability of D, a weak basic drug, has been hampered by its poor solubility in the neutral pH of the body fluids. In this study, instantly-soluble transmucosal matrices (ISTMs) of D, containing dual mechanism solubilizer (Pluronic F-127/citric acid mixture), were prepared by lyophilization technique to enhance matrix disintegration, dissolution and transmucosal permeation. The matrices were evaluated for in-vitro disintegration, wetting time, in-vitro dissolution, ex vivo transmucosal permeation, scanning electron microscopy and in-vivo studies. Dissolution studies confirmed the higher ability of ISTMs to enhance the early time point dissolution and maintain complete drug dissolution in pH 6.8 compared to conventional lyophilized matrices. The optimized ISTM gave approximately 77.54 and 88.40 folds increase of D dissolution after 1 and 3min relative to the drug powder in pH 6.8. ISTMs containing the highest F127 concentration (2%) and the lowest gelatin and mannitol concentrations (1%) exhibited the shortest in-vitro disintegration times (<10s), the fastest dissolution in the neutral pH of body fluids (∼99% in 3min) and the highest enhancement of transmucosal permeation. The relative bioavailabilities of D after sublingual and intranasal administration of ISTMs to rabbits were about 124.58% and 611.15%, respectively, in comparison to the oral market tablet. The significant increase of drug dissolution in nasal fluids, rapid permeation rate together with the improved bioavailability propose that ISTMs could be promising for intranasal delivery of drugs suffering from oral hepatic metabolism and have limited solubility in nasal fluids.
Drug Delivery | 2018
Abdurrahman M. Fahmy; Doaa Ahmed El-Setouhy; Ahmed B. Ibrahim; Basant A. Habib; Saadia A. Tayel; Noha A. Bayoumi
Abstract Haloperidol (Hal) is one of the widely used antipsychotic drugs. When orally administered, it suffers from low bioavailability due to hepatic first pass metabolism. This study aimed at developing Hal-loaded penetration enhancer-containing spanlastics (PECSs) to increase transdermal permeation of Hal with sustained release. PECSs were successfully prepared using ethanol injection method showing reasonable values of percentage entrapment efficiency, particle size, polydispersity index and zeta potential. The statistical analysis of the ex vivo permeation parameters led to the choice of F1L – made of Span® 60 and Tween® 80 at the weight ratio of 4:1 along with 1% w/v Labrasol® – as the selected formula (SF). SF was formulated into a hydrogel by using 2.5% w/v of HPMC K4M. The hydrogel exhibited good in vitro characteristics. Also, it retained its physical and chemical stability for one month in the refrigerator. The radiolabeling of SF showed a maximum yield by mixing of 100 µl of diluted formula with 50 µl saline having 200 MBq of 99mTc and containing 13.6 mg of reducing agent (NaBH4) and volume completed to 300 µl by saline at pH 10 for 10 min as reaction time. The biodistribution study showed that the transdermal 99mTc-SF hydrogel exhibited a more sustained release pattern and longer circulation duration with pulsatile behavior in the blood and higher brain levels than the oral 99mTc-SF dispersion. So, transdermal hydrogel of SF may be considered a promising sustained release formula for Hal maintenance therapy with reduced dose size and less frequent administration than oral formula.
Drug Delivery | 2016
Saadia A. Tayel; Mohamed Ahmed El-Nabarawi; Mina Ibrahim Tadros; Wessam Hamdy Abd-Elsalam
Abstract Context: Pravastatin sodium (PVS) is a freely water-soluble HMG-CoA inhibitor that suffers from instability at gastric pH, extensive first pass metabolism, short elimination half-life (1–3 h) and low oral bioavailability (18%). Objective: To overpower these drawbacks and to maximize drug absorption at its main site of absorption at the duodenum, enteric surface-coated PVS-loaded nanocubosomal dispersions were presented. Materials and methods: Glyceryl monooleate (GMO)-based dispersions were developed by the fragmentation or the liquid precursor methods using Pluronic® F127 or Cremophor® EL as surfactants. As a challenging enteric-coating approach, the promising dispersions were surface-coated via lyophilization with Eudragit® L100-55; a duodenum-targeting polymer. The drug content, particle size, zeta potential, morphology and release studies of PVS-loaded dispersions were evaluated before and after surface-coating. Compared to an aqueous PVS solution, the pharmacokinetics of the best achieved system (E-F8) was evaluated (UPLC-MS/MS) in rats. Results: The enteric surface-coated nanocubosomal dispersions were more or less spherical in shape and showed high drug-loading, negative zeta potential values and fine-tuned biphasic drug-release patterns characterized by retarded (2 h) and sustained (10 h) phases in pH 1.2 and pH 6.8, respectively. E-F8 system showed significantly (p< 0.05) higher oral bioavailability, delayed Tmax and prolonged MRT0−∞ following oral administration in rats. Conclusions: The duodenum-triggering potential and the controlled-release characteristics of the best achieved system for smart PVS delivery were revealed.
Journal of Pharmacy and Bioallied Sciences | 2013
Mohamed Ahmed El-Nabarawi; Saadia A. Tayel; Nadia A Soliman; Hadel A Abo Enin
Objective: A stress induced rise in the blood pressure. Some believe that patients with hypertension are characterized by a generalized state of increased anxiety. Aim: The purpose of this study is to prepare a fixed dose bi therapy using bisoprolol hemifumarate (BH) as antihypertensive drug and buspirone hydrochloride (BuHCl) as anxiolytic drug, which can be used to treat both diseases concomitantly. Using sublingual tablets is hopeful to improve the BuHCl poor oral bioavailability and to facilitate administration to patients experiencing problems with swallowing. Materials and Methods: A total of 5mg BH and 10mg BuHCl were selected based on compatibility study. A 3×22 full factorial design was adopted for the optimization of the tablets prepared by direct compression method. The effects of the filler type, the binder molecular weight, and the binder type were studied. The prepared formulae were evaluated according to their physical characters as hardness, friability, disintegration time (new modified method and in vivo disintegration time) and wetting properties. In vitro drugs dissolute, permeation through the buccal mucosa and the effect of storage were analyzed by a new valid high pressure liquid chromatography (HPLC) method. Bioavailability study of the selected formula study was carried out and followed by the clinical. Results: The optimized tablet formulation showed accepted average weight, hardness, wetting time, friability, content uniformity, disintegration time (less than 3 min). Maximum drug release could be achieved with in 10 min. In addition enhancing drug permeation through the buccal mucosa and, the maximum concentration of the drug that reached the blood was in the first 10 min which means a rapid onset of action and improved the extent of both drugs absorption. Conclusion: The results revealed that sublingual (F6) tablets containing both drugs would maintain rapid onset of action, and increase bioavailability. BuHCl with BH can be attributed to the marked decline in DBP and SBP. That led to a reduction in the MAP.
European Journal of Pharmaceutics and Biopharmaceutics | 2008
Saadia A. Tayel; Iman I. Soliman; Dina Louis
Aaps Pharmscitech | 2013
Saadia A. Tayel; Mohamed Ahmed El-Nabarawi; Mina Ibrahim Tadros; Wessam Hamdy Abd-Elsalam