Saba Tadesse
Columbia University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Saba Tadesse.
Annals of Neurology | 2000
Ichizo Nishino; Antonella Spinazzola; Alexandros Papadimitriou; Simon Hammans; Israel Steiner; Cecil D. Hahn; Anne M. Connolly; Alain Verloes; João Guimarães; Ivan Maillard; Hitoshi Hamano; M. Alice Donati; Carol E. Semrad; James A. Russell; Antonio L. Andreu; Giorgos M. Hadjigeorgiou; Tuan Vu; Saba Tadesse; Torbjoern G. Nygaard; Ikuya Nonaka; Ikuo Hirano; Eduardo Bonilla; Lewis P. Rowland; Salvatore DiMauro; Michio Hirano
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder defined clinically by severe gastrointestinal dysmotility; cachexia; ptosis, ophthalmoparesis, or both; peripheral neuropathy; leukoencephalopathy; and mitochondrial abnormalities. The disease is caused by mutations in the thymidine phosphorylase (TP) gene. TP protein catalyzes phosphorolysis of thymidine to thymine and deoxyribose 1‐phosphate. We identified 21 probands (35 patients) who fulfilled our clinical criteria for MNGIE. MNGIE has clinically homogeneous features but varies in age at onset and rate of progression. Gastrointestinal dysmotility is the most prominent manifestation, with recurrent diarrhea, borborygmi, and intestinal pseudo‐obstruction. Patients usually die in early adulthood (mean, 37.6 years; range, 26–58 years). Cerebral leukodystrophy is characteristic. Mitochondrial DNA (mtDNA) has depletion, multiple deletions, or both. We have identified 16 TP mutations. Homozygous or compound heterozygous mutations were present in all patients tested. Leukocyte TP activity was reduced drastically in all patients tested, 0.009 ± 0.021 μmol/hr/mg (mean ± SD; n = 16), compared with controls, 0.67 ± 0.21 μmol/hr/mg (n = 19). MNGIE is a recognizable clinical syndrome caused by mutations in thymidine phosphorylase. Severe reduction of TP activity in leukocytes is diagnostic. Altered mitochondrial nucleoside and nucleotide pools may impair mtDNA replication, repair, or both. Ann Neurol 2000;47:792–800
Neurology | 2006
Michio Hirano; Ramon Martí; Carlo Casali; Saba Tadesse; T. Uldrick; B. Fine; Diana M. Escolar; M. L. Valentino; I. Nishino; C. Hesdorffer; Joseph E. Schwartz; R. G. Hawks; D. L. Martone; M. S. Cairo; Salvatore DiMauro; M. Stanzani; James Garvin; D. G. Savage
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a multisystemic autosomal recessive disease due to primary thymidine phosphorylase (TP) deficiency. To restore TP activity, we performed reduced intensity allogeneic stem cell transplantations (alloSCTs) in two patients. In the first, alloSCT failed to engraft, but the second achieved mixed donor chimerism, which partially restored buffy coat TP activity and lowered plasma nucleosides. Thus, alloSCT can correct biochemical abnormalities in the blood of patients with MNGIE, but clinical efficacy remains unproven.
JAMA Neurology | 2012
Valentina Emmanuele; Luis C. López; Andres Berardo; Ali Naini; Saba Tadesse; Bing Wen; Erin D’Agostino; Martha Solomon; Salvatore DiMauro; Catarina M. Quinzii; Michio Hirano
Coenzyme Q(10) (CoQ(10)) deficiency has been associated with 5 major clinical phenotypes: encephalomyopathy, severe infantile multisystemic disease, nephropathy, cerebellar ataxia, and isolated myopathy. Primary CoQ(10) deficiency is due to defects in CoQ(10) biosynthesis, while secondary forms are due to other causes. A review of 149 cases, including our cohort of 76 patients, confirms that CoQ(10) deficiency is a clinically and genetically heterogeneous syndrome that mainly begins in childhood and predominantly manifests as cerebellar ataxia. Coenzyme Q(10) measurement in muscle is the gold standard for diagnosis. Identification of CoQ(10) deficiency is important because the condition frequently responds to treatment. Causative mutations have been identified in a small proportion of patients.
Brain | 2011
Caterina Garone; Saba Tadesse; Michio Hirano
Mitochondrial neurogastrointestinal encephalomyopathy is a rare multisystemic autosomic recessive disorder characterized by: onset typically before the age of 30 years; ptosis; progressive external ophthalmoplegia; gastrointestinal dysmotility; cachexia; peripheral neuropathy; and leucoencephalopathy. The disease is caused by mutations in the TYMP gene encoding thymidine phosphorylasethymine phosphorylase. Anecdotal reports suggest that allogeneic haematopoetic stem cell transplantation may be beneficial for mitochondrial neurogastrointestinal encephalomyopathy, but is associated with a high mortality. After selecting patients who fulfilled the clinical criteria for mitochondrial neurogastrointestinal encephalomyopathy and had severe thymidine phosphorylase deficiency in the buffy coat (<10% of normal activity), we reviewed their medical records and laboratory studies. We identified 102 patients (50 females) with mitochondrial neurogastrointestinal encephalomyopathy and an average age of 32.4 years (range 11-59 years). We found 20 novel TYMP mutations. The average age-at-onset was 17.9 years (range 5 months to 35 years); however, the majority of patients reported the first symptoms before the age of 12 years. The patient distribution suggests a relatively high prevalence in Europeans, while the mutation distribution suggests founder effects for a few mutations, such as c.866A>G in Europe and c.518T>G in the Dominican Republic, that could guide genetic screening in each location. Although the sequence of clinical manifestations in the disease varied, half of the patients initially had gastrointestinal symptoms. We confirmed anecdotal reports of intra- and inter-familial clinical variability and absence of genotype-phenotype correlation in the disease, suggesting genetic modifiers, environmental factors or both contribute to disease manifestations. Acute medical events such as infections often provoked worsening of symptoms, suggesting that careful monitoring and early treatment of intercurrent illnesses may be beneficial. We observed endocrine/exocrine pancreatic insufficiency, which had not previously been reported. Kaplan-Meier analysis revealed significant mortality between the ages of 20 and 40 years due to infectious or metabolic complications. Despite increasing awareness of this illness, a high proportion of patients had been misdiagnosed. Early and accurate diagnosis of mitochondrial neurogastrointestinal encephalomyopathy, together with timely treatment of acute intercurrent illnesses, may retard disease progression and increase the number of patients eligible for allogeneic haematopoetic stem cell transplantation.
Human Molecular Genetics | 2009
Luis C. López; Hasan O. Akman; Angeles Garcia-Cazorla; Beatriz Dorado; Ramon Martí; Ichizo Nishino; Saba Tadesse; Giuseppe Pizzorno; Dikoma C. Shungu; Eduardo Bonilla; Kurenai Tanji; Michio Hirano
Replication and repair of DNA require equilibrated pools of deoxynucleoside triphosphate precursors. This concept has been proven by in vitro studies over many years, but in vivo models are required to demonstrate its relevance to multicellular organisms and to human diseases. Accordingly, we have generated thymidine phosphorylase (TP) and uridine phosphorylase (UP) double knockout (TP(-/-)UP(-/-)) mice, which show severe TP deficiency, increased thymidine and deoxyuridine in tissues and elevated mitochondrial deoxythymidine triphosphate. As consequences of the nucleotide pool imbalances, brains of mutant mice developed partial depletion of mtDNA, deficiencies of respiratory chain complexes and encephalopathy. These findings largely account for the pathogenesis of mitochondrial neurogastrointestinal encephalopathy (MNGIE), the first inherited human disorder of nucleoside metabolism associated with somatic DNA instability.
FEBS Letters | 2007
Maria Lucia Valentino; Ramon Martí; Saba Tadesse; Luis C. López; Jose L. Manes; Judy Lyzak; Angelika Hahn; Valerio Carelli; Michio Hirano
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disease due to ECGF1 gene mutations causing thymidine phosphorylase (TP) deficiency. Analysis of post‐mortem samples of five MNGIE patients and two controls, revealed TP activity in all control tissues, but not in MNGIE samples. Converse to TP activity, thymidine and deoxyuridine were absent in control samples, but present in all tissues of MNGIE patients. Concentrations of both nucleosides in the tissues were generally higher than those observed in plasma of MNGIE patients. Our observations indicate that in the absence of TP activity, tissues accumulate nucleosides, which are excreted into plasma.
Annals of Neurology | 2005
Ramon Martí; Jan J. Verschuuren; Alan L. Buchman; Ikuo Hirano; Saba Tadesse; André B.P. van Kuilenburg; Albert H. van Gennip; Ben J. H. M. Poorthuis; Michio Hirano
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is caused by mutations in the gene encoding thymidine phosphorylase (TP). All MNGIE patients have had severe loss of TP function and prominent plasma accumulations of the TP substrates thymidine (dThd) and deoxyuridine (dUrd). Here, we report for the first time to our knowledge three MNGIE patients with later onset, milder phenotype, and less severe TP dysfunction, compared with typical MNGIE patients. This report demonstrates a direct relationship between the biochemical defects and clinical phenotypes in MNGIE and supports the notion that reduction of dThd and dUrd accumulation or TP replacement could be useful therapy for MNGIE. Ann Neurol 2005;58:649–652
Neuromuscular Disorders | 2003
Yutaka Nishigaki; Saba Tadesse; Eduardo Bonilla; Dikoma C. Shungu; Stephen P. Hersh; Bronya Keats; Charles I. Berlin; Morton F. Goldberg; Jerry Vockley; Salvatore DiMauro; Michio Hirano
Abstract In a patient with clinical features of both myoclonus epilepsy ragged-red fibers (MERRF) and Kearns–Sayre syndrome (KSS), we identified a novel guanine-to-adenine mitochondrial DNA (mtDNA) mutation at nucleotide 3255 (G3255A) of the tRNA Leu(UUR) gene. Approximately 5% of the skeletal muscle fibers had excessive mitochondria by succinate dehydrogenase histochemistry while a smaller proportion showed cytochrome c oxidase (COX) deficiency. In skeletal muscle, activities of mitochondrial respiratory chain complexes I, I+III, II+III, and IV were reduced. The G3255A transition was heteroplasmic in all tissues tested: muscle (53%), urine sediment (67%), peripheral leukocytes (22%), and cultured skin fibroblasts ( n =25) compared to COX-positive non-RRF (18%±9, n =21). The identification of yet another tRNA Leu(UUR) mutation reinforces the concept that this gene is a hot-spot for pathogenic mtDNA mutations.
The FASEB Journal | 2013
Catarina M. Quinzii; Caterina Garone; Valentina Emmanuele; Saba Tadesse; Sindu Krishna; Beatriz Dorado; Michio Hirano
Primary human CoQ10 deficiencies are clinically heterogeneous diseases caused by mutations in PDSS2 and other genes required for CoQ10 biosynthesis. Our in vitro studies of PDSS2 mutant fibroblasts, with <20% CoQ10 of control cells, revealed reduced activity of CoQ10‐dependent complex II+III and ATP synthesis, without amplification of reactive oxygen species (ROS), markers of oxidative damage, or antioxidant defenses. In contrast, COQ2 and ADCK3 mutant fibroblasts, with 30–50% CoQ10 of controls, showed milder bioenergetic defects but significantly increased ROS and oxidation of lipids and proteins. We hypothesized that absence of oxidative stress markers and cell death in PDSS2 mutant fibroblasts were due to the extreme severity of CoQ10 deficiency. Here, we have investigated in vivo effects of Pdss2 deficiency in affected and unaffected organs of CBA/Pdss2kd/kd mice at presymptomatic, phenotypic‐onset, and end‐stages of the disease. Although Pdss2 mutant mice manifest widespread CoQ9 deficiency and mitochondrial respiratory chain abnormalities, only affected organs show increased ROS production, oxidative stress, mitochondrial DNA depletion, and reduced citrate synthase activity, an index of mitochondrial mass. Our data indicate that kidney‐specific loss of mitochondria triggered by oxidative stress may be the cause of renal failure in Pdss2kd/kd mice.—Quinzii, C. M., Garone, C., Emmanuele, V., Tadesse, S., Krishna, S., Dorado, B., Hirano, M. Tissue‐specific oxidative stress and loss of mitochondria in CoQ‐deficient Pdss2 mutant mice. FASEB J. 27, 612–621 (2013). www.fasebj.org
Embo Molecular Medicine | 2014
Caterina Garone; Beatriz Garcia-Diaz; Valentina Emmanuele; Luis C. López; Saba Tadesse; Hasan O. Akman; Kurenai Tanji; Catarina M. Quinzii; Michio Hirano
Autosomal recessive mutations in the thymidine kinase 2 gene (TK2) cause mitochondrial DNA depletion, multiple deletions, or both due to loss of TK2 enzyme activity and ensuing unbalanced deoxynucleotide triphosphate (dNTP) pools. To bypass Tk2 deficiency, we administered deoxycytidine and deoxythymidine monophosphates (dCMP+dTMP) to the Tk2 H126N (Tk2−/−) knock‐in mouse model from postnatal day 4, when mutant mice are phenotypically normal, but biochemically affected. Assessment of 13‐day‐old Tk2−/− mice treated with dCMP+dTMP 200 mg/kg/day each (Tk2−/−200dCMP/dTMP) demonstrated that in mutant animals, the compounds raise dTTP concentrations, increase levels of mtDNA, ameliorate defects of mitochondrial respiratory chain enzymes, and significantly prolong their lifespan (34 days with treatment versus 13 days untreated). A second trial of dCMP+dTMP each at 400 mg/kg/day showed even greater phenotypic and biochemical improvements. In conclusion, dCMP/dTMP supplementation is the first effective pharmacologic treatment for Tk2 deficiency.