Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sabahattin Bicer is active.

Publication


Featured researches published by Sabahattin Bicer.


Journal of Muscle Research and Cell Motility | 2004

Myosin light chain isoform expression among single mammalian skeletal muscle fibers: species variations.

Sabahattin Bicer; Peter J. Reiser

Extensive heterogeneity in myosin heavy chain and light chain (MLC) isoform expression in skeletal muscle has been well documented in several mammalian species. The initial objective of this study was to determine the extent of heterogeneity in myosin isoform expression among single fibers in limb muscles of dogs, a species for which relatively little has been reported. Fibers were isolated from muscles that have different functions with respect to limb extension and limb flexion and were analyzed on SDS gels, with respect to myosin isoform composition. The results of this part of the study indicate that there are at least four distinct fiber types in dog limb and diaphragm muscles, on the basis of MLC isoform expression: conventional fast (expressing fast-type isoforms of MLC1 (MLC1F) and MLC2 (MLC2F), plus MLC3), conventional slow (expressing slow-type MLC1 (MLC1S) and MLC2 (MLC2S)), hybrid (expressing MLC1S, MLC1F, MLC2S, MLC2F and MLC3) and a second slow fiber type, designated as S1F. S1F fibers express MLC1F, along with MLC1S and MLC2S and relatively low levels of MLC3. The fraction of slow fibers that are S1F fibers varies among dog limb muscles, being greater in limb extensors than flexors. Furthermore, the mean level of MLC1F in S1F fibers is greater in extensors than flexors (mean levels range from ~3% to 50% of total MLC1). The study was, therefore, extended to include six additional species, spanning a broad range in adult body size to more thoroughly characterize heterogeneity in MLC isoform expression among mammals. The results indicate that there are distinct patterns in MLC isoform expression among fast and slow fibers among different species. Specifically, large-size mammals have two distinct types of slow fibers, based upon MLC isoform composition (conventional and S1F fibers), whereas small mammals exhibit variations in MLC isoforms between different types of fast fibers, including a fast fiber type that expresses MLC1S (designated as F1S fibers). S1F fibers were absent in rodent muscles and F1S fibers were not found in large mammals. We conclude that extensive variation exists in MLC isoform expression in mammalian skeletal muscle fibers, yet there are distinct patterns among different species and among muscles within an individual species.


Brain Behavior and Immunity | 2015

Tumor Growth Increases Neuroinflammation, Fatigue and Depressive-like Behavior Prior to Alterations in Muscle Function

Diana M. Norden; Sabahattin Bicer; Yvonne Clark; Runfeng Jing; Christopher J. Henry; Loren E. Wold; Peter J. Reiser; Jonathan P. Godbout; Donna O. McCarthy

Cancer patients frequently suffer from fatigue, a complex syndrome associated with loss of muscle mass, weakness, and depressed mood. Cancer-related fatigue (CRF) can be present at the time of diagnosis, during treatment, and persists for years after treatment. CRF negatively influences quality of life, limits functional independence, and is associated with decreased survival in patients with incurable disease. Currently there are no effective treatments to reduce CRF. The aim of this study was to use a mouse model of tumor growth and discriminate between two main components of fatigue: loss of muscle mass/function and altered mood/motivation. Here we show that tumor growth increased fatigue- and depressive-like behaviors, and reduced body and muscle mass. Decreased voluntary wheel running activity (VWRA) and increased depressive-like behavior in the forced swim and sucrose preference tests were evident in tumor-bearing mice within the first two weeks of tumor growth and preceded the loss of body and muscle mass. At three weeks, tumor-bearing mice had reduced grip strength but this was not associated with altered expression of myosin isoforms or impaired contractile properties of muscles. These increases in fatigue and depressive-like behaviors were paralleled by increased expression of IL-1β mRNA in the cortex and hippocampus. Minocycline administration reduced tumor-induced expression of IL-1β in the brain, reduced depressive-like behavior, and improved grip strength without altering muscle mass. Taken together, these results indicate that neuroinflammation and depressed mood, rather than muscle wasting, contribute to decreased voluntary activity and precede major changes in muscle contractile properties with tumor growth.


Investigative Ophthalmology & Visual Science | 2009

Myosin Isoform Expression in Dog Rectus Muscles: Patterns in Global and Orbital Layers and among Single Fibers

Sabahattin Bicer; Peter J. Reiser

PURPOSE To quantitate the distribution of myosin heavy chain (MyHC) isoforms along the global and orbital layers of dog rectus muscles and determine MyHC and myosin light chain (MLC) isoform patterns among single fibers from both layers. METHODS Serial samples of both layers of rectus muscles were prepared for gel electrophoresis. Relative amounts of each MyHC isoform in each sample were determined with scanning densitometry. Single fibers were isolated from each layer for analyses of MyHC and MLC isoforms. RESULTS Nine MyHC isoforms were detected. Four prominent MyHC isoforms, and an additional MyHC isoform at very low levels, are expressed in the global layer. Evidence suggests that all nine MyHC isoforms are expressed in the orbital layer. There are marked gradients in the levels of some MyHC isoforms along the length of both layers. Complex patterns of coexpression of multiple MyHC isoforms exist in single fibers from both layers. Most fibers express conventional slow or fast MLC isoforms, in accordance with the type (slow or fast) of MyHC isoform(s) in a given fiber, with the exception that slow fibers in the orbital layer express the atrial/embryonic isoform of MLC1. CONCLUSIONS MyHC isoform expression patterns differ markedly between and along global and orbital layers of dog rectus muscles, with greater complexity in the orbital layer. Heterogeneity in MyHC isoform expression in rectus muscles is much greater than in limb muscles and presumably is the basis for the broad spectrum of extraocular muscle (EOM) contractile properties in driving oculomotor functions.


The Journal of Experimental Biology | 2009

Masticatory (`superfast') myosin heavy chain and embryonic/atrial myosin light chain 1 in rodent jaw-closing muscles

Peter J. Reiser; Sabahattin Bicer; Qun Chen; Ling Zhu; Ning Quan

SUMMARY Masticatory myosin is widely expressed among several vertebrate classes. Generally, the expression of masticatory myosin has been associated with high bite force for a carnivorous feeding style (including capturing/restraining live prey), breaking down tough plant material and defensive biting in different species. Masticatory myosin expression in the largest mammalian order, Rodentia, has not been reported. Several members of Rodentia consume large numbers of tree nuts that are encased in very hard shells, presumably requiring large forces to access the nutmeat. We, therefore, tested whether some rodent species express masticatory myosin in jaw-closing muscles. Myosin isoform expression in six Sciuridae species was examined, using protein gel electrophoresis, immunoblotting, mass spectrometry and RNA analysis. The results indicate that masticatory myosin is expressed in some Sciuridae species but not in other closely related species with similar diets but having different nut-opening strategies. We also discovered that the myosin light chain 1 isoform associated with masticatory myosin heavy chain, in the same four Sciuridae species, is the embryonic/atrial isoform. We conclude that rodent speciation did not completely eliminate masticatory myosin and that its persistent expression in some rodent species might be related to not only diet but also to feeding style.


American Journal of Physiology-heart and Circulatory Physiology | 2015

Metalloproteinase expression is altered in cardiac and skeletal muscle in cancer cachexia

Raymond D. Devine; Sabahattin Bicer; Peter J. Reiser; Markus Velten; Loren E. Wold

Cardiac and skeletal muscle dysfunction is a recognized effect of cancer-induced cachexia, with alterations in heart function leading to heart failure and negatively impacting patient morbidity. Cachexia is a complex and multifaceted disease state with several potential contributors to cardiac and skeletal muscle dysfunction. Matrix metalloproteinases (MMPs) are a family of enzymes capable of degrading components of the extracellular matrix (ECM). Changes to the ECM cause disruption both in the connections between cells at the basement membrane and in cell-to-cell interactions. In the present study, we used a murine model of C26 adenocarcinoma-induced cancer cachexia to determine changes in MMP gene and protein expression in cardiac and skeletal muscle. We analyzed MMP-2, MMP-3, MMP-9, and MMP-14 as they have been shown to contribute to both cardiac and skeletal muscle ECM changes and, thereby, to pathology in models of heart failure and muscular dystrophy. In our model, cardiac and skeletal muscles showed a significant increase in RNA and protein levels of several MMPs and tissue inhibitors of metalloproteinases. Cardiac muscle showed significant protein increases in MMP-2, MMP-3, MMP-9, and MMP-14, whereas skeletal muscles showed increases in MMP-2, MMP-3, and MMP-14. Furthermore, collagen deposition was increased after C26 adenocarcinoma-induced cancer cachexia as indicated by an increased left ventricular picrosirius red-positive-stained area. Increases in serum hydroxyproline suggest increased collagen turnover, implicating skeletal muscle remodeling. Our findings demonstrate that cancer cachexia-associated matrix remodeling results in cardiac fibrosis and possible skeletal muscle remodeling. With these findings, MMPs represent a possible therapeutic target for the treatment of cancer-induced cachexia.


Life Sciences | 2015

Ibuprofen Ameliorates Fatigue- And Depressive-Like Behavior in Tumor-Bearing Mice

Diana M. Norden; Donna O. McCarthy; Sabahattin Bicer; Raymond D. Devine; Peter J. Reiser; Jonathan P. Godbout; Loren E. Wold

AIMS Cancer-related fatigue (CRF) is often accompanied by depressed mood, both of which reduce functional status and quality of life. Research suggests that increased expression of pro-inflammatory cytokines is associated with skeletal muscle wasting and depressive- and fatigue-like behaviors in rodents and cancer patients. We have previously shown that treatment with ibuprofen, a nonsteroidal anti-inflammatory drug, preserved muscle mass in tumor-bearing mice. Therefore, the purpose of the present study was to determine the behavioral effects of ibuprofen in a mouse model of CRF. MAIN METHODS Mice were injected with colon-26 adenocarcinoma cells and treated with ibuprofen (10mg/kg) in the drinking water. Depressive-like behavior was determined using the forced swim test (FST). Fatigue-like behaviors were determined using voluntary wheel running activity (VWRA) and grip strength. The hippocampus, gastrocnemius muscle, and serum were collected for cytokine analysis. KEY FINDINGS Tumor-bearing mice showed depressive-like behavior in the FST, which was not observed in mice treated with ibuprofen. VWRA and grip strength declined in tumor-bearing mice, and ibuprofen attenuated this decline. Tumor-bearing mice had decreased gastrocnemius muscle mass and increased expression of IL-6, MAFBx and MuRF mRNA, biomarkers of protein degradation, in the muscle. Expression of IL-1β and IL-6 was also increased in the hippocampus. Treatment with ibuprofen improved muscle mass and reduced cytokine expression in both the muscle and hippocampus of tumor-bearing mice. SIGNIFICANCE Ibuprofen treatment reduced skeletal muscle wasting, inflammation in the brain, and fatigue- and depressive-like behavior in tumor-bearing mice. Therefore, ibuprofen warrants evaluation as an adjuvant treatment for CRF.


Inflammation Research | 2009

Induction of muscle weakness by local inflammation: an experimental animal model

Sabahattin Bicer; Peter J. Reiser; S. Ching; Ning Quan

Abstract.Objective and design:The objective of this study was to characterize the response of skeletal muscle to a localized inflammation induced by the inflammatory agent casein.Methods:An inflammatory agent, casein, was injected into the right hindlimb and saline was injected into the left hindlimb of normal adult mice, once daily for six consecutive days. Inflammatory response was monitored by immunohistochemical labeling of leukocytes. Muscle protein levels were determined by electrophoresis and muscle function was determined by isometric force measurements.Results:Local inflammation was induced by casein in association with the accumulation of extensive neutrophils and macrophages in the solues muscle. This local inflammation resulted in a shift in myosin heavy chain (MHC) isoform expression and a significant reduction in total MHC concentration in the soleus. Maximal twitch and tetanic forces were significantly reduced in the inflamed soleus. Contractile function in soleus was fully restored after two weeks of recovery, along with the restoration of protein concentration and the disappearance of inflammatory cells.Conclusion:This study establishes a unique and robust model in which mechanisms of local inflammation induced muscle protein degradation, reduction of contractile force, and subsequent recovery from this condition can be further studied.


Journal of Veterinary Internal Medicine | 2000

Hemodynamic and electrocardiographic effects of graded doses of amiodarone in healthy dogs anesthetized with morphine/alpha chloralose.

Sabahattin Bicer; Denise S. Schwartz; Tomohiro Nakayama; Robert L. Hamlin

This research was designed to study acute hemodynamic and electrocardiographic effects of amiodarone and to determine an IV dose of amiodarone that minimally affects left ventricular function and does not increase the tendency for ventricular arrhythmia.


Physiology & Behavior | 2015

Fluoxetine Prevents the Development of Depressive-like Behavior in a Mouse Model of Cancer Related Fatigue

Diana M. Norden; Raymond D. Devine; Sabahattin Bicer; Runfeng Jing; Peter J. Reiser; Loren E. Wold; Jonathan P. Godbout; Donna O. McCarthy

Cancer patients frequently suffer from fatigue, a complex syndrome associated with tiredness and depressed mood. Cancer-related fatigue (CRF) can be present at the time of diagnosis, escalates during treatment, and can persist for years after treatment. CRF negatively influences quality of life, limits functional independence, and is associated with decreased survival in patients with incurable disease. We have previously shown that increased pro-inflammatory cytokine expression in the brain contributes to depressive- and fatigue-like behaviors in a mouse model of CRF. Inflammatory cytokines increase the activity of indoleamine 2,3-dioxygenase (IDO) and kynurenine 3-monooxygenase (KMO), which competitively reduce serotonin synthesis. Reduced serotonin availability in the brain and increased production of alternative neuroactive metabolites of tryptophan are thought to contribute to the development of depression and fatigue. The purpose of this study was to determine the effects of fluoxetine, a selective serotonin reuptake inhibitor (SSRI), on brain cytokines and behavioral measures of fatigue and depression in tumor-bearing mice. Here we show that tumor growth increased brain expression of pro-inflammatory cytokines and KMO. Treatment with fluoxetine had no effect on tumor growth, muscle wasting, fatigue behavior, or cytokine expression in the brain. Fluoxetine, however, reduced depressive-like behaviors in tumor bearing mice. In conclusion, our data confirm that increased brain expression of pro-inflammatory cytokines is associated with tumor-induced fatigue- and depressive-like behaviors. However, it is possible to separate the effects of tumor growth on mood and fatigue-like behaviors using SSRIs such as fluoxetine.


Journal of Molecular and Cellular Cardiology | 2015

Losartan treatment attenuates tumor-induced myocardial dysfunction.

Sarah C. W. Stevens; Markus Velten; Dane J. Youtz; Yvonne Clark; Runfeng Jing; Peter J. Reiser; Sabahattin Bicer; Raymond D. Devine; Donna O. McCarthy; Loren E. Wold

UNLABELLED Fatigue and muscle wasting are common symptoms experienced by cancer patients. Data from animal models demonstrate that angiotensin is involved in tumor-induced muscle wasting, and that tumor growth can independently affect myocardial function, which could contribute to fatigue in cancer patients. In clinical studies, inhibitors of angiotensin converting enzyme (ACE) can prevent the development of chemotherapy-induced cardiovascular dysfunction, suggesting a mechanistic role for the renin-angiotensin-aldosterone system (RAAS). In the present study, we investigated whether an angiotensin (AT) 1-receptor antagonist could prevent the development of tumor-associated myocardial dysfunction. METHODS AND RESULTS Colon26 adenocarcinoma (c26) cells were implanted into female CD2F1 mice at 8weeks of age. Simultaneously, mice were administered Losartan (10mg/kg) daily via their drinking water. In vivo echocardiography, blood pressure, in vitro cardiomyocyte function, cell proliferation assays, and measures of systemic inflammation and myocardial protein degradation were performed 19days following tumor cell injection. Losartan treatment prevented tumor-induced loss of muscle mass and in vitro c26 cell proliferation, decreased tumor weight, and attenuated myocardial expression of interleukin-6. Furthermore, Losartan treatment mitigated tumor-associated alterations in calcium signaling in cardiomyocytes, which was associated with improved myocyte contraction velocity, systolic function, and blood pressures in the hearts of tumor-bearing mice. CONCLUSIONS These data suggest that Losartan may mitigate tumor-induced myocardial dysfunction and inflammation.

Collaboration


Dive into the Sabahattin Bicer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge