Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sabhyata Bhatia is active.

Publication


Featured researches published by Sabhyata Bhatia.


Plant Journal | 2013

A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.).

Mukesh K. Jain; Gopal Misra; Ravi K. Patel; Pushp Priya; Shalu Jhanwar; Aamir W. Khan; Niraj Shah; Vikas K. Singh; Rohini Garg; Ganga Jeena; Manju Yadav; Chandra Kant; Priyanka Sharma; Gitanjali Yadav; Sabhyata Bhatia; Akhilesh K. Tyagi; Debasis Chattopadhyay

Cicer arietinum L. (chickpea) is the third most important food legume crop. We have generated the draft sequence of a desi-type chickpea genome using next-generation sequencing platforms, bacterial artificial chromosome end sequences and a genetic map. The 520-Mb assembly covers 70% of the predicted 740-Mb genome length, and more than 80% of the gene space. Genome analysis predicts the presence of 27,571 genes and 210 Mb as repeat elements. The gene expression analysis performed using 274 million RNA-Seq reads identified several tissue-specific and stress-responsive genes. Although segmental duplicated blocks are observed, the chickpea genome does not exhibit any indication of recent whole-genome duplication. Nucleotide diversity analysis provides an assessment of a narrow genetic base within the chickpea cultivars. We have developed a resource for genetic markers by comparing the genome sequences of one wild and three cultivated chickpea genotypes. The draft genome sequence is expected to facilitate genetic enhancement and breeding to develop improved chickpea varieties.


Plant Physiology | 2011

Gene Discovery and Tissue-Specific Transcriptome Analysis in Chickpea with Massively Parallel Pyrosequencing and Web Resource Development

Rohini Garg; Ravi K. Patel; Shalu Jhanwar; Pushp Priya; Annapurna Bhattacharjee; Gitanjali Yadav; Sabhyata Bhatia; Debasis Chattopadhyay; Akhilesh K. Tyagi; Mukesh K. Jain

Chickpea (Cicer arietinum) is an important food legume crop but lags in the availability of genomic resources. In this study, we have generated about 2 million high-quality sequences of average length of 372 bp using pyrosequencing technology. The optimization of de novo assembly clearly indicated that hybrid assembly of long-read and short-read primary assemblies gave better results. The hybrid assembly generated a set of 34,760 transcripts with an average length of 1,020 bp representing about 4.8% (35.5 Mb) of the total chickpea genome. We identified more than 4,000 simple sequence repeats, which can be developed as functional molecular markers in chickpea. Putative function and Gene Ontology terms were assigned to at least 73.2% and 71.0% of chickpea transcripts, respectively. We have also identified several chickpea transcripts that showed tissue-specific expression and validated the results using real-time polymerase chain reaction analysis. Based on sequence comparison with other species within the plant kingdom, we identified two sets of lineage-specific genes, including those conserved in the Fabaceae family (legume specific) and those lacking significant similarity with any non chickpea species (chickpea specific). Finally, we have developed a Web resource, Chickpea Transcriptome Database, which provides public access to the data and results reported in this study. The strategy for optimization of de novo assembly presented here may further facilitate the transcriptome sequencing and characterization in other organisms. Most importantly, the data and results reported in this study will help to accelerate research in various areas of genomics and implementing breeding programs in chickpea.


Theoretical and Applied Genetics | 1994

Potential use of random amplified polymorphic DNA (RAPD) technique to study the genetic diversity in Indian mustard (Brassica juncea) and its relationship to heterosis.

A. Jain; Sabhyata Bhatia; S. S. Banga; Shyam Prakash; Malathi Lakshmikumaran

RAPD assays were performed, using 34 arbitrary decamer oligonucleotide primers and six combinations of two primers, to detect inherent variations and genetic relationships among 12 Indian and 11 exotic B. juncea genotypes. Of 595 amplification products identified, 500 of them were polymorphic across all genotypes. A low level of genetic variability was detected among the Indian genotypes, while considerable polymorphism was present among the exotic ones. Based on the pair-wise comparisons of amplification products the genetic similarity was calculated using Jaccards similarity coefficients and a dendrogram was constructed using an unweighted pair group method was arithmetical averages (UPGMA). On the basis of this analysis the genotypes were clustered into two groups, A and B. Group A comprised only exotic genotypes, whereas all the Indian genotypes and four of the exotic genotypes were clustered in group B. Almost similar genotypic rankings could also be established by computing as few as 200 amplification products. In general, a high per cent of heterosis was recorded in crosses involving Indian x exotic genotypes. On the other hand, when crosses were made amongst Indian or exotic genotypes, about 80% of them exhibited negative heterosis. Results from this study indicate that, despite the lack of direct correlation between the genetic distance and the degree of heterosis, genetic diversity forms a very useful guide not only for investigating the relationships among Brassica genotypes but also in the selection of parents for heterotic hybrid combinations.


Theoretical and Applied Genetics | 2009

Development of chickpea EST-SSR markers and analysis of allelic variation across related species

Shalu Choudhary; Niroj Kumar Sethy; Bhumika Shokeen; Sabhyata Bhatia

Despite chickpea being the third important grain legume, there is a limited availability of genomic resources, especially of the expressed sequence tag (EST)-based markers. In this study, we generated 822 chickpea ESTs from immature seeds as well as exploited 1,309 ESTs from the chickpea database, thus utilizing a total of 2,131 EST sequences for development of functional EST-SSR markers. Two hundred and forty-six simple sequence repeat (SSR) motifs were identified from which 183 primer pairs were designed and 60 validated as functional markers. Genetic diversity analysis across 30 chickpea accessions revealed ten markers to be polymorphic producing a total of 29 alleles and an observed heterozygosity average of 0.16 thereby exhibiting low levels of intra-specific polymorphism. However, the markers exhibited high cross-species transferability ranging from 68.3 to 96.6% across the six annual Cicer species and from 29.4 to 61.7% across the seven legume genera. Sequence analysis of size variant amplicons from various species revealed that size polymorphism was due to multiple events such as copy number variation, point mutations and insertions/deletions in the microsatellite repeat as well as in the flanking regions. Interestingly, a wide prevalence of crossability-group-specific sequence variations were observed among Cicer species that were phylogenetically informative. The neighbor joining dendrogram clearly separated the chickpea cultivars from the wild Cicer and validated the proximity of C. judaicum with C. pinnatifidum. Hence, this study for the first time provides an insight into the distribution of SSRs in the chickpea transcribed regions and also demonstrates the development and utilization of genic-SSRs. In addition to proving their suitability for genetic diversity analysis, their high rates of transferability also proved their potential for comparative genomic studies and for following gene introgressions and evolution in wild species, which constitute the valuable secondary genepool in chickpea.


Theoretical and Applied Genetics | 2006

Development of microsatellite markers and analysis of intraspecific genetic variability in chickpea (Cicer arietinum L.)

Niroj Kumar Sethy; Bhumika Shokeen; Keith J. Edwards; Sabhyata Bhatia

Paucity of polymorphic molecular markers in chickpea (Cicer arietinum L.) has been a major limitation in the improvement of this important legume. Hence, in an attempt to develop sequence-tagged microsatellite sites (STMS) markers from chickpea, a microsatellite enriched library from the C. arietinum cv. Pusa362 nuclear genome was constructed for the identification of (CA/GT)n and (CT/GA)n microsatellite motifs. A total of 92 new microsatellites were identified, of which 74 functional STMS primer pairs were developed. These markers were validated using 9 chickpea and one C. reticulatum accession. Of the STMS markers developed, 25 polymorphic markers were used to analyze the intraspecific genetic diversity within 36 geographically diverse chickpea accessions. The 25 primer pairs amplified single loci producing a minimum of 2 and maximum of 11 alleles. A total of 159 alleles were detected with an average of 6.4 alleles per locus. The observed and expected heterozygosity values averaged 0.32 (0.08–0.91) and 0.74 (0.23–0.89) respectively. The UPGMA based dendrogram was able to distinguish all the accessions except two accessions from Afghanistan establishing that microsatellites could successfully detect intraspecific genetic diversity in chickpea. Further, cloning and sequencing of size variant alleles at two microsatellite loci revealed that the variable numbers of AG repeats in different alleles were the major source of polymorphism. Point mutations were found to occur both within and immediately upstream of the long tracts of perfect repeats, thereby bringing about a conversion of perfect motifs into imperfect or compound motifs. Such events possibly occurred in order to limit the expansion of microsatellites and also lead to the birth of new microsatellites. The microsatellite markers developed in this study will be useful for genetic diversity analysis, linkage map construction as well as for depicting intraspecific microsatellite evolution.


DNA Research | 2012

High-Throughput SNP Discovery and Genotyping for Constructing a Saturated Linkage Map of Chickpea (Cicer arietinum L.)

Rashmi Gaur; Sarwar Azam; Ganga Jeena; Aamir W. Khan; Shalu Choudhary; Mukesh K. Jain; Gitanjali Yadav; Akhilesh K. Tyagi; Debasis Chattopadhyay; Sabhyata Bhatia

The present study reports the large-scale discovery of genome-wide single-nucleotide polymorphisms (SNPs) in chickpea, identified mainly through the next generation sequencing of two genotypes, i.e. Cicer arietinum ICC4958 and its wild progenitor C. reticulatum PI489777, parents of an inter-specific reference mapping population of chickpea. Development and validation of a high-throughput SNP genotyping assay based on Illuminas GoldenGate Genotyping Technology and its application in building a high-resolution genetic linkage map of chickpea is described for the first time. In this study, 1022 SNPs were identified, of which 768 high-confidence SNPs were selected for designing the custom Oligo Pool All (CpOPA-I) for genotyping. Of these, 697 SNPs could be successfully used for genotyping, demonstrating a high success rate of 90.75%. Genotyping data of the 697 SNPs were compiled along with those of 368 co-dominant markers mapped in an earlier study, and a saturated genetic linkage map of chickpea was constructed. One thousand and sixty-three markers were mapped onto eight linkage groups spanning 1808.7 cM (centiMorgans) with an average inter-marker distance of 1.70 cM, thereby representing one of the most advanced maps of chickpea. The map was used for the synteny analysis of chickpea, which revealed a higher degree of synteny with the phylogenetically close Medicago than with soybean. The first set of validated SNPs and map resources developed in this study will not only facilitate QTL mapping, genome-wide association analysis and comparative mapping in legumes but also help anchor scaffolds arising out of the whole-genome sequencing of chickpea.


Theoretical and Applied Genetics | 1999

Assessment of genetic diversity in Azadirachta indica using AFLP markers

A. Singh; M. S. Negi; J. Rajagopal; Sabhyata Bhatia; U. K. Tomar; P. S. Srivastava; Malathi Lakshmikumaran

Abstract Genetic diversity was estimated in 37 neem accessions from different eco-geographic regions of India and four exotic lines from Thailand using AFLP markers. Seven AFLP selective primer combinations generated a total of 422 amplification products. The average number of scorable fragments was 60 per experiment, and a high degree (69.8%) of polymorphism was obtained per assay with values ranging from 58% to 83.8%. Several rare and accession-specific bands were identified which could be effectively used to distinguish the different genotypes. Genetic relationships within the accessions were evaluated by generating a similarity matrix based on the Jaccard index. The phenetic dendrogram generated by UPGMA as well as principal correspondence analysis separated the 37 Indian genotypes from the four Thai lines. The cluster analysis indicated that neem germplasm within India constitutes a broad genetic base with the values of genetic similarity coefficient ranging from 0.74 to 0.93. Also, the Indian genotypes were more dispersed on the principal correspondence plot, indicating a wide genetic base. The four lines from Thailand, on the other hand, formed a narrow genetic base with similarity coefficients ranging from 0.88 to 0.92. The lowest genetic similarity coefficient value (0.47) was observed between an Indian and an exotic genotype. The level of genetic variation detected within the neem accessions with AFLP analysis suggests that it is an efficient marker technology for delineating genetic relationships amongst genotypes and estimating genetic diversity, thereby enabling the formulation of appropriate strategies for conservation and tree improvement programs.


BMC Genomics | 2011

Advancing the STMS genomic resources for defining new locations on the intraspecific genetic linkage map of chickpea (Cicer arietinum L.)

Rashmi Gaur; Niroj Kumar Sethy; Shalu Choudhary; Bhumika Shokeen; Varsha Gupta; Sabhyata Bhatia

BackgroundChickpea (Cicer arietinum L.) is an economically important cool season grain legume crop that is valued for its nutritive seeds having high protein content. However, several biotic and abiotic stresses and the low genetic variability in the chickpea genome have continuously hindered the chickpea molecular breeding programs. STMS (Sequence Tagged Microsatellite Sites) markers which are preferred for the construction of saturated linkage maps in several crop species, have also emerged as the most efficient and reliable source for detecting allelic diversity in chickpea. However, the number of STMS markers reported in chickpea is still limited and moreover exhibit low rates of both inter and intraspecific polymorphism, thereby limiting the positions of the SSR markers especially on the intraspecific linkage maps of chickpea. Hence, this study was undertaken with the aim of developing additional STMS markers and utilizing them for advancing the genetic linkage map of chickpea which would have applications in QTL identification, MAS and for de novo assembly of high throughput whole genome sequence data.ResultsA microsatellite enriched library of chickpea (enriched for ( GT/CA)n and (GA/CT)n repeats) was constructed from which 387 putative microsatellite containing clones were identified. From these, 254 STMS primers were designed of which 181 were developed as functional markers. An intraspecific mapping population of chickpea, [ICCV-2 (single podded) × JG-62 (double podded)] and comprising of 126 RILs, was genotyped for mapping. Of the 522 chickpea STMS markers (including the double-podding trait, screened for parental polymorphism, 226 (43.3%) were polymorphic in the parents and were used to genotype the RILs. At a LOD score of 3.5, eight linkage groups defining the position of 138 markers were obtained that spanned 630.9 cM with an average marker density of 4.57 cM. Further, based on the common loci present between the current map and the previously published chickpea intraspecific map, integration of maps was performed which revealed improvement of marker density and saturation of the region in the vicinity of sfl (double-podding) gene thereby bringing about an advancement of the current map.ConclusionAn arsenal of 181 new chickpea STMS markers was reported. The developed intraspecific linkage map defined map positions of 138 markers which included 101 new locations.Map integration with a previously published map was carried out which revealed an advanced map with improved density. This study is a major contribution towards providing advanced genomic resources which will facilitate chickpea geneticists and molecular breeders in developing superior genotypes with improved traits.


Journal of Biosciences | 1999

Assessment of genetic variation withinBrassica campestris cultivars using amplified fragment length polymorphism and random amplification of polymorphic DNA markers

Sandip Das; Jyothi Rajagopal; Sabhyata Bhatia; P. S. Srivastava; Malathi Lakshmikumaran

Genetic relationships were evaluated among nine cultivars ofBrassica campestris by employing random amplification of polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) markers. RAPDs generated a total of 125 bands using 13 decamer primers (an average of 9.6 bands per assay) of which nearly 80% were polymorphic. The per cent polymorphism ranged from 60–100%. AFLP, on the other hand generated a total of 319 markers, an average of 64 bands per assay. Of these, 213 were polymorphic in nature (66.8%). AFLP methodology detected polymorphism more efficiently than RAPD approach due to a greater number of loci assayed per reaction. Cultivar-specific bands were identified, for some cultivars using RAPD, and for most cultivars with AFLP. Genetic similarity matrix, based on Jaccard’s index detected coefficients ranging from 0.42 to 0.73 for RAPD, and from 0.48 to 0.925 for AFLPs indicating a wide genetic base. Cluster analyses using data generated by both RAPD and AFLP markers, clearly separated the yellow seeded, self-compatible cultivars from the brown seeded, self-incompatible cultivars although AFLP markers were able to group the cultivars more accurately. The higher genetic variation detected by AFLP in comparison to RAPD was also reflected in the topography of the phenetic dendrograms obtained. These results have been discussed in light of other studies and the relative efficiency of the marker systems for germplasm evaluation.


Theoretical and Applied Genetics | 2006

Identification of microsatellite markers from Cicer reticulatum : molecular variation and phylogenetic analysis

Niroj Kumar Sethy; Shalu Choudhary; Bhumika Shokeen; Sabhyata Bhatia

Microsatellite sequences were cloned and sequenced from Cicer reticulatum, the wild annual progenitor of chickpea (C. arietinum L.). Based on the flanking sequences of the microsatellite motifs, 11 sequence-tagged microsatellite site (STMS) markers were developed. These markers were used for phylogenetic analysis of 29 accessions representing all the nine annual Cicer species. The 11 primer pairs amplified distinct fragments in all the annual species demonstrating high levels of sequence conservation at these loci. Efficient marker transferability (97%) of the C. reticulatum STMS markers across other species of the genus was observed as compared to microsatellite markers from the cultivated species. Variability in the size and number of alleles was obtained with an average of 5.8 alleles per locus. Sequence analysis at three homologous microsatellite loci revealed that the microsatellite allele variation was mainly due to differences in the copy number of the tandem repeats. However, other factors such as (1) point mutations, (2) insertion/deletion events in the flanking region, (3) expansion of closely spaced microsatellites and (4) repeat conversion in the amplified microsatellite loci were also responsible for allelic variation. An unweighted pairgroup method with arithmetic averages (UPGMA)-based dendrogram was obtained, which clearly distinguished all the accessions (except two C. judaicum accessions) from one another and revealed intra- as well as inter-species variability in the genus. An annual Cicer phylogeny was depicted which established the higher similarity between C. arietinum and C. reticulatum. The placement of C. pinnatifidum in the second crossability group and its closeness to C. bijugum was supported. Two species, C. yamashitae and C. chorassanicum, were grouped distinctly and seemed to be genetically diverse from members of the first crossability group. Our data support the distinct placement of C. cuneatum as well as a revised classification regarding its placement.

Collaboration


Dive into the Sabhyata Bhatia's collaboration.

Top Co-Authors

Avatar

Bhumika Shokeen

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar

Niroj Kumar Sethy

Defence Research and Development Organisation

View shared research outputs
Top Co-Authors

Avatar

Shalu Choudhary

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar

Mukesh K. Jain

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gitanjali Yadav

Keck Graduate Institute of Applied Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge