Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sabina Signoretti is active.

Publication


Featured researches published by Sabina Signoretti.


Nature | 2010

The landscape of somatic copy-number alteration across human cancers

Rameen Beroukhim; Craig H. Mermel; Dale Porter; Guo Wei; Soumya Raychaudhuri; Jerry Donovan; Jordi Barretina; Jesse S. Boehm; Jennifer Dobson; Mitsuyoshi Urashima; Kevin T. Mc Henry; Reid M. Pinchback; Azra H. Ligon; Yoon-Jae Cho; Leila Haery; Heidi Greulich; Michael R. Reich; Wendy Winckler; Michael S. Lawrence; Barbara A. Weir; Kumiko Tanaka; Derek Y. Chiang; Adam J. Bass; Alice Loo; Carter Hoffman; John R. Prensner; Ted Liefeld; Qing Gao; Derek Yecies; Sabina Signoretti

A powerful way to discover key genes with causal roles in oncogenesis is to identify genomic regions that undergo frequent alteration in human cancers. Here we present high-resolution analyses of somatic copy-number alterations (SCNAs) from 3,131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the BCL2 family of apoptosis regulators and the NF-κΒ pathway. We show that cancer cells containing amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival. Finally, we demonstrate that a large majority of SCNAs identified in individual cancer types are present in several cancer types.


Cancer Research | 2005

Arginase-Producing Myeloid Suppressor Cells in Renal Cell Carcinoma Patients: A Mechanism of Tumor Evasion

Arnold H. Zea; Paulo C. Rodriguez; Michael B. Atkins; Claudia Hernandez; Sabina Signoretti; Jovanny Zabaleta; David F. McDermott; David Quiceno; Amanda Youmans; Anne O'Neill; Augusto C. Ochoa

Myeloid suppressor cells with high arginase activity are found in tumors and spleen of mice with colon and lung cancer. These cells, described as macrophages or immature dendritic cells, deplete arginine and impair T cell proliferation and cytokine production. Although arginase activity has been described in cancer patients, it is thought to originate from tumor cells metabolizing arginine to ornithine needed to sustain rapid cell proliferation. The goal of this study was to determine whether myeloid suppressor cells producing high arginase existed in renal cell carcinoma patients. Peripheral blood mononuclear cells from 123 patients with metastatic renal cell carcinoma, prior to treatment, were found to have a significantly increased arginase activity. These patients had a markedly decreased cytokine production and expressed low levels of T cell receptor CD3zeta chain. Cell separation studies showed that the increased arginase activity was limited to a specific subset of CD11b+, CD14-, CD15+ cells with a polymorphonuclear granulocyte morphology and markers, instead of macrophages or dendritic cells described in mouse models. Furthermore, these patients had low levels of arginine and high levels of ornithine in plasma. Depletion of the CD11b+, CD14- myeloid suppressor cells reestablished T cell proliferation and CD3zeta chain expression. These results showed, for the first time, the existence of suppressor myeloid cells producing arginase in human cancer patients. In addition, it supports the concept that blocking arginase may be an important step in the success of immunotherapy.


American Journal of Pathology | 2000

p63 Is a Prostate Basal Cell Marker and Is Required for Prostate Development

Sabina Signoretti; David Waltregny; James Dilks; Beth Isaac; Douglas I. Lin; Levi A. Garraway; Annie Yang; Rondolfo Montironi; Frank McKeon; Massimo Loda

The p53 homologue p63 encodes for different isotypes able to either transactivate p53 reporter genes (TAp63) or act as p53-dominant-negatives (DeltaNp63). p63 is expressed in the basal cells of many epithelial organs and its germline inactivation in the mouse results in agenesis of organs such as skin appendages and the breast. Here, we show that prostate basal cells, but not secretory or neuroendocrine cells, express p63. In addition, prostate basal cells in culture predominantly express the DeltaNp63alpha isotype. In contrast, p63 protein is not detected in human prostate adenocarcinomas. Finally, and most importantly, p63(-/-) mice do not develop the prostate. These results indicate that p63 is required for prostate development and support the hypothesis that basal cells represent and/or include prostate stem cells. Furthermore, our results show that p63 immunohistochemistry may be a valuable tool in the differential diagnosis of benign versus malignant prostatic lesions.


Molecular and Cellular Biology | 2000

Forkhead Transcription Factors Are Critical Effectors of Cell Death and Cell Cycle Arrest Downstream of PTEN

Noriaki Nakamura; Shivapriya Ramaswamy; Francisca Vazquez; Sabina Signoretti; Massimo Loda; William R. Sellers

ABSTRACT PTEN acts as a tumor suppressor, at least in part, by antagonizing phosphoinositide 3-kinase (PI3K)/Akt signaling. Here we show that Forkhead transcription factors FKHRL1 and FKHR, substrates of the Akt kinase, are aberrantly localized to the cytoplasm and cannot activate transcription in PTEN-deficient cells. Restoration of PTEN function restores FKHR to the nucleus and restores transcriptional activation. Expression of a constitutively active form of FKHR that cannot be phosphorylated by Akt produces the same effect as reconstitution of PTEN on PTEN-deficient tumor cells. Specifically, activated FKHR induces apoptosis in cells that undergo PTEN-mediated cell death and induces G1 arrest in cells that undergo PTEN-mediated cell cycle arrest. Furthermore, both PTEN and constitutively active FKHR induce p27KIP1 protein but not p21. These data suggest that Forkhead transcription factors are critical effectors of PTEN-mediated tumor suppression.


Nature | 2008

Essential roles of PI(3)K–p110β in cell growth, metabolism and tumorigenesis

Shidong Jia; Zhenning Liu; Sen Zhang; Pixu Liu; Lei Zhang; Sang Hyun Lee; Jing Zhang; Sabina Signoretti; Massimo Loda; Thomas M. Roberts; Jean J. Zhao

On activation by receptors, the ubiquitously expressed class IA isoforms (p110α and p110β) of phosphatidylinositol-3-OH kinase (PI(3)K) generate lipid second messengers, which initiate multiple signal transduction cascades. Recent studies have demonstrated specific functions for p110α in growth factor and insulin signalling. To probe for distinct functions of p110β, we constructed conditional knockout mice. Here we show that ablation of p110β in the livers of the resulting mice leads to impaired insulin sensitivity and glucose homeostasis, while having little effect on phosphorylation of Akt, suggesting the involvement of a kinase-independent role of p110β in insulin metabolic action. Using established mouse embryonic fibroblasts, we found that removal of p110β also had little effect on Akt phosphorylation in response to stimulation by insulin and epidermal growth factor, but resulted in retarded cell proliferation. Reconstitution of p110β-null cells with a wild-type or kinase-dead allele of p110β demonstrated that p110β possesses kinase-independent functions in regulating cell proliferation and trafficking. However, the kinase activity of p110β was required for G-protein-coupled receptor signalling triggered by lysophosphatidic acid and had a function in oncogenic transformation. Most strikingly, in an animal model of prostate tumour formation induced by Pten loss, ablation of p110β (also known as Pik3cb), but not that of p110α (also known as Pik3ca), impeded tumorigenesis with a concomitant diminution of Akt phosphorylation. Taken together, our findings demonstrate both kinase-dependent and kinase-independent functions for p110β, and strongly indicate the kinase-dependent functions of p110β as a promising target in cancer therapy.


Clinical Cancer Research | 2005

Carbonic Anhydrase IX Expression Predicts Outcome of Interleukin 2 Therapy for Renal Cancer

Michael B. Atkins; Meredith M. Regan; David F. McDermott; Eric J. Stanbridge; Amanda Youmans; Philip G. Febbo; Melissa P. Upton; Mirna Lechpammer; Sabina Signoretti

Purpose: Renal cancer response to interleukin 2 (IL-2) therapy and patient survival has been correlated with tumor histology and carbonic anhydrase IX (CAIX) expression. In an effort to confirm and expand these observations, we examined CAIX expression in pathology specimens from renal cancer patients who had previously received IL-2 therapy. Experimental Design: Paraffin-embedded tissue sections of renal cancer were immunostained with the MN-75 monoclonal antibody to CAIX and expression levels were correlated with histologic findings and clinical outcome. Results: Tissue specimens were obtained from 66 patients; 27 of whom (41%) had responded to IL-2–based therapy. Fifty-eight specimens were assessed as clear cell, with 56, 33, and 4 having alveolar, granular, and papillary features, respectively. Twenty-four (36%), 31 (47%), and 11 (17%) were classified into good, intermediate, and poor prognosis groups according to the Upton pathology model. Forty-one specimens (62%) had high CAIX expression. Twenty-one of 27 (78%) responding patients had high CAIX expressing tumors compared with 20 of 39 (51%) nonresponders (odds ratio, 3.3; P = 0.04). Median survival was prolonged (P = 0.04) and survival >5 years was only seen in high CAIX expressers. In patients with intermediate pathologic prognosis, all nine responders had high CAIX expression versus 11 of 22 nonresponders. A resultant group with good pathologic prognosis alone or with intermediate pathologic prognosis and high CAIX contained 26 of 27 (96%) responders compared with 18 of 39 (46%) nonresponders (odds ratio, 30; P < 0.01) and exhibited longer median survival (P < 0.01). Conclusions: CAIX expression seems to be an important predictor of outcome in renal cell carcinoma patients receiving IL-2–based therapy and may enhance prognostic information obtained from pathology specimens.


Nature | 2002

Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation

Nabeel Bardeesy; Manisha Sinha; Sabina Signoretti; Nathaniel A. Hathaway; Norman E. Sharpless; Massimo Loda; Daniel R. Carrasco; Ronald A. DePinho

Germline mutations in LKB1 (also known as STK11) are associated with Peutz–Jeghers syndrome (PJS), a disorder with predisposition to gastrointestinal polyposis and cancer. PJS polyps are unusual neoplasms characterized by marked epithelial and stromal overgrowth but have limited malignant potential. Here we show that Lkb1+/- mice develop intestinal polyps identical to those seen in individuals affected with PJS. Consistent with this in vivo tumour suppressor function, Lkb1 deficiency prevents culture-induced senescence without loss of Ink4a/Arf or p53. Despite compromised mortality, Lkb1-/- mouse embryonic fibroblasts show resistance to transformation by activated Ha-Ras either alone or with immortalizing oncogenes. This phenotype is in agreement with the paucity of mutations in Ras seen in PJS polyps and suggests that loss of Lkb1 function as an early neoplastic event renders cells resistant to subsequent oncogene-induced transformation. In addition, the Lkb1 transcriptome shows modulation of factors linked to angiogenesis, extracellular matrix remodelling, cell adhesion and inhibition of Ras transformation. Together, our data rationalize several features of PJS polyposis—notably its peculiar histopathological presentation and limited malignant potential—and place Lkb1 in a distinct class of tumour suppressors.


Nature | 2011

SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression

Zhihu Ding; Chang Jiun Wu; Gerald C. Chu; Yonghong Xiao; Jingfang Zhang; Samuel R. Perry; Emma S. Labrot; Xiaoqiu Wu; Rosina T. Lis; Yujin Hoshida; David Hiller; Baoli Hu; Shan Jiang; Hongwu Zheng; Alexander H. Stegh; Kenneth L. Scott; Sabina Signoretti; Nabeel Bardeesy; Y. Alan Wang; David E. Hill; Todd R. Golub; Meir J. Stampfer; Wing Hung Wong; Massimo Loda; Lorelei A. Mucci; Lynda Chin; Ronald A. DePinho

Effective clinical management of prostate cancer (PCA) has been challenged by significant intratumoural heterogeneity on the genomic and pathological levels and limited understanding of the genetic elements governing disease progression. Here, we exploited the experimental merits of the mouse to test the hypothesis that pathways constraining progression might be activated in indolent Pten-null mouse prostate tumours and that inactivation of such progression barriers in mice would engender a metastasis-prone condition. Comparative transcriptomic and canonical pathway analyses, followed by biochemical confirmation, of normal prostate epithelium versus poorly progressive Pten-null prostate cancers revealed robust activation of the TGFβ/BMP–SMAD4 signalling axis. The functional relevance of SMAD4 was further supported by emergence of invasive, metastatic and lethal prostate cancers with 100% penetrance upon genetic deletion of Smad4 in the Pten-null mouse prostate. Pathological and molecular analysis as well as transcriptomic knowledge-based pathway profiling of emerging tumours identified cell proliferation and invasion as two cardinal tumour biological features in the metastatic Smad4/Pten-null PCA model. Follow-on pathological and functional assessment confirmed cyclin D1 and SPP1 as key mediators of these biological processes, which together with PTEN and SMAD4, form a four-gene signature that is prognostic of prostate-specific antigen (PSA) biochemical recurrence and lethal metastasis in human PCA. This model-informed progression analysis, together with genetic, functional and translational studies, establishes SMAD4 as a key regulator of PCA progression in mice and humans.


Cancer Research | 2009

Patterns of gene expression and copy-number alterations in von-hippel lindau disease-associated and sporadic clear cell carcinoma of the kidney.

Rameen Beroukhim; Jean Philippe Brunet; Arianna Di Napoli; Kirsten D. Mertz; Apryle Seeley; Maira M. Pires; David Linhart; Robert Worrell; Holger Moch; Mark A. Rubin; William R. Sellers; Matthew Meyerson; W. Marston Linehan; William G. Kaelin; Sabina Signoretti

Recent insights into the role of the von-Hippel Lindau (VHL) tumor suppressor gene in hereditary and sporadic clear-cell renal cell carcinoma (ccRCC) have led to new treatments for patients with metastatic ccRCC, although virtually all patients eventually succumb to the disease. We performed an integrated, genome-wide analysis of copy-number changes and gene expression profiles in 90 tumors, including both sporadic and VHL disease-associated tumors, in hopes of identifying new therapeutic targets in ccRCC. We identified 14 regions of nonrandom copy-number change, including 7 regions of amplification (1q, 2q, 5q, 7q, 8q, 12p, and 20q) and 7 regions of deletion (1p, 3p, 4q, 6q, 8p, 9p, and 14q). An analysis aimed at identifying the relevant genes revealed VHL as one of three genes in the 3p deletion peak, CDKN2A and CDKN2B as the only genes in the 9p deletion peak, and MYC as the only gene in the 8q amplification peak. An integrated analysis to identify genes in amplification peaks that are consistently overexpressed among amplified samples confirmed MYC as a potential target of 8q amplification and identified candidate oncogenes in the other regions. A comparison of genomic profiles revealed that VHL disease-associated tumors are similar to a subgroup of sporadic tumors and thus more homogeneous overall. Sporadic tumors without evidence of biallelic VHL inactivation fell into two groups: one group with genomic profiles highly dissimilar to the majority of ccRCC and a second group with genomic profiles that are much more similar to tumors with biallelic inactivation of VHL.


Journal of Clinical Investigation | 2002

Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer

Sabina Signoretti; Lucia Di Marcotullio; Andrea L. Richardson; Sridhar Ramaswamy; Beth Isaac; Montserrat Rue; Franco Monti; Massimo Loda; Michele Pagano

Estrogen receptor (ER) expression and Her-2 amplification define specific subsets of breast tumors for which specific therapies exist. The S-phase kinase-associated protein Skp2 is required for the ubiquitin-mediated degradation of the cdk-inhibitor p27 and is a bona fide proto-oncoprotein. Using microarray analysis and immunohistochemistry, we determined that higher levels of Skp2 are present more frequently in ER-negative tumors than in ER-positive cases. Interestingly, the subset of ER-negative breast carcinomas overexpressing Skp2 are also characterized by high tumor grade, negativity for Her-2, basal-like phenotype, high expression of certain cell cycle regulatory genes, and low levels of p27 protein. We also found that Skp2 expression is cell adhesion-dependent in normal human mammary epithelial cells but not in breast cancer cells and that an inhibition of Skp2 induces a decrease of adhesion-independent growth in both ER-positive and ER-negative cancer cells. Finally, forced expression of Skp2 abolished effects of antiestrogens, suggesting that deregulated Skp2 expression might play a role in the development of resistance to antiestrogens. We conclude that Skp2 has oncogenic potential in breast epithelial cells and is overexpressed in a subset of breast carcinomas (ER- and Her-2 negative) for which Skp2 inhibitors may represent a valid therapeutic option.

Collaboration


Dive into the Sabina Signoretti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David F. McDermott

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Andre Poisl Fay

Pontifícia Universidade Católica do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Jiaxi Song

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rupal S. Bhatt

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jonathan E. Rosenberg

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge