Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sabine Baumgartner is active.

Publication


Featured researches published by Sabine Baumgartner.


Atherosclerosis | 2012

Progress and prospective of plant sterol and plant stanol research: Report of the Maastricht meeting.

Jogchum Plat; Dylan S. MacKay; Sabine Baumgartner; Peter M. Clifton; Helena Gylling; Peter J. H. Jones

Abundant evidence over past decades shows that foods with added plant sterols and plant stanols lower serum LDL cholesterol concentrations. However, despite the overwhelming data, numerous scientific questions still remain. The objective of this paper is to summarize the considerations of 60 academic and industrial experts who participated in the scientific meeting in Maastricht, the Netherlands, on issues related to the health effects of plant sterols and plant stanols. The meeting participants discussed issues including efficacy profiling, heterogeneity in responsiveness, effects beyond LDL-C lowering, and food formulation aspects of plant sterol and stanol consumption. Furthermore, aspects related to the potential atherogenicity of elevated circulatory plant sterol concentrations were discussed. Until the potential atherogenicity of plant sterols is resolved, based on the results >200 clinical trials, the risk to benefit of plant sterol use is favorable. Evidence on these topics in plant sterol and plant stanol research was presented and used to reach consensus where possible. It was concluded that endpoint studies looking at plant sterol and plant stanol efficacy are needed, however, there was no clear opinion on the best marker and best design for such a study. Based on the current scientific evidence, plant sterols and plant stanols are recommended for use as dietary options to lower serum cholesterol.


Atherosclerosis | 2013

Effects of plant sterol- or stanol-enriched margarine on fasting plasma oxyphytosterol concentrations in healthy subjects

Sabine Baumgartner; Ronald P. Mensink; Constanze Husche; Dieter Lütjohann; Jogchum Plat

BACKGROUND Consumption of plant sterols and plant stanols reduces low-density lipoprotein cholesterol (LDL-C) concentrations. At the same time, plasma plant sterol concentrations will increase after plant sterol consumption, but decrease after plant stanol consumption. In contrast to plant stanols, plant sterols can undergo oxidation and form oxyphytosterols. Findings from in vitro and animal studies suggest that oxyphytosterols might be atherogenic. OBJECTIVE The objective was to examine whether plant sterol and stanol consumption changes fasting plasma oxyphytosterol concentrations. DESIGN A randomized, double blind, cross-over study was performed in which 43 healthy subjects (18-70 years) consumed for 4 weeks a plant sterol-enriched (3.0 g/d of plant sterols), a plant stanol-enriched (3.0 g/d of plant stanols), and a control margarine separated by wash-out periods of 4 weeks. Oxyphytosterol concentrations were determined in BHT-enriched plasma via GC-MS. RESULTS Compared to control, serum LDL-C concentrations were reduced after plant sterol (-8.1%; p < 0.001) and plant stanol consumption (-7.8%; p < 0.001). Plant sterol consumption did not change plasma oxyphytosterol concentrations. On the other hand, intake of the plant stanol margarine reduced 7β-OH-campesterol by 0.07 ng/mL (~14%; p < 0.01) and by 0.07 ng/mL (~15%; p < 0.01) compared with the control and sterol margarines, respectively. When standardized for serum cholesterol, effects on these oxyphytosterols were comparable. In addition, plant stanol intake reduced cholesterol-standardized 7-keto-campesterol levels compared with plant sterol intake (p < 0.05). CONCLUSIONS Daily consumption of a plant sterol-enriched margarine does not increase oxyphytosterol concentrations, while plant stanol consumption may reduce the concentrations of the oxidative plant sterol metabolites 7β-OH-campesterol and 7-keto-campesterol.


European Journal of Clinical Nutrition | 2014

Palmitic acid in the sn-2 position decreases glucose-dependent insulinotropic polypeptide secretion in healthy adults

Androulla Filippou; Sarah E. E. Berry; Sabine Baumgartner; Ronald P. Mensink; Thomas A. B. Sanders

Background/objectives:Dietary triacylglycerols (TAGs) containing palmitic acid in the sn-2 position might impair insulin release and increase plasma glucose. We tested this hypothesis by comparing postprandial responses to fats with varying proportions of palmitic acid in the sn-2 position.Subjects/methods:Using a crossover-designed randomized controlled trial in healthy men (n=25) and women (n=25), we compared four meals on postprandial changes in glucose (primary outcome), insulin, C-peptide, glucose, glucose-dependent insulinotropic polypeptide (GIP) and polypeptide YY (PYY) concentrations. The meals provided 14 g protein, 85 g carbohydrate and 50 g test fat, supplied as high oleic sunflower (HOS) oil (control), palm olein (PO), interesterified palm olein (IPO) and lard containing 0.6, 9.2, 39.1 and 70.5 mol% palmitic acid at sn-2, respectively.Results:No differences in plasma glucose, insulin and C-peptide response between meals were found. GIP release was lower (P<0.001) for IPO and lard compared with HOS and PO meals; the maximal increments (geometric mean and 95% confidence interval) for HOS, PO, IPO and lard were 515 (468, 569), 492 (448, 540), 398 (350, 452) and 395 (364, 429) ng/l, respectively. There was a trend for the postprandial increase in PYY to be lower in women on the IPO and lard meals than those on the HOS and PO meals.Conclusions:Dietary TAGs with an increased proportion of palmitic acid in the sn-2 position do not have acute adverse effects on the insulin and glucose response to meals in healthy men and women, but they decrease GIP release.


The Journal of Steroid Biochemistry and Molecular Biology | 2017

Effects of plant stanol ester consumption on fasting plasma oxy(phyto)sterol concentrations as related to fecal microbiota characteristics

Sabine Baumgartner; Ronald P. Mensink; Els De Smet; Maurice Konings; Susana Fuentes; Willem M. de Vos; Jogchum Plat

Information regarding dietary effects on plasma oxyphytosterol concentrations as well as on the origin of oxyphytosterols is scarce. We hypothesized that plant sterols are oxidized in the intestinal lumen, mediated by microbial activity, followed by uptake into the circulation. To address this hypothesis, we carried out, a randomized, double blind, crossover study in 13 healthy subjects, who consumed for 3 weeks control and plant stanol ester enriched margarines (3.0g/d plant stanols) separated by a 4-week wash-out period. Plasma oxy(phyto)sterols were determined via GC-MS/MS, while microbiota analyses were performed on fecal DNA using a phylogenetic microarray to assess microbial composition and diversity. Plasma plant sterol concentrations did not correlate with plasma oxyphytosterols concentrations at baseline. Plant stanol consumption reduced serum sitosterol and campesterol concentrations (-37% and -38%), respectively (p<0.001), as well as plasma concentrations of 7β-OH-campesterol (-24%; p<0.05), 7β-OH-sitosterol (-17%; p<0.05) and 7-keto-sitosterol (-13%; p<0.05). Although the intestinal microbiota composition and diversity of the faecal contents were not different between the two periods, we observed significant correlations between several specific bacterial groups and plasma plant sterol, but not with plasma oxyphytosterol concentrations. In conclusion, plant stanol ester consumption reduced serum plant sterol and plasma oxyphytosterol concentrations, while intestinal microbiota composition and diversity were not changed. To definitely answer the effects of microbiota on oxyphytosterol formation, future studies could examine oxyphytosterol concentrations after changing intestinal microbial composition or by measuring intestinal oxyphytosterol formation after providing labelled non-oxidized plant sterols.


Steroids | 2015

Postprandial plasma oxyphytosterol concentrations after consumption of plant sterol or stanol enriched mixed meals in healthy subjects

Sabine Baumgartner; Ronald P. Mensink; Maurice Konings; Hans-F. Schött; Silvia Friedrichs; Constanze Husche; Dieter Lütjohann; Jogchum Plat

Epidemiological studies have reported inconsistent results on the relationship between increased plant sterol concentrations with cardiovascular risk, which might be related to the formation of oxyphytosterols (plant sterol oxidation products) from plant sterols. However, determinants of oxyphytosterol formation and metabolism are largely unknown. It is known, however, that serum plant sterol concentrations increase after daily consumption of plant sterol enriched products, while concentrations decrease after plant stanol consumption. Still, we have earlier reported that fasting oxyphytosterol concentrations did not increase after consuming a plant sterol- or a plant stanol enriched margarine (3.0g/d of plant sterols or stanols) for 4weeks. Since humans are in a non-fasting state for most part of the day, we have now investigated effects on oxyphytosterol concentrations during the postprandial state. For this, subjects consumed a shake (50g of fat, 12g of protein, 67g of carbohydrates), containing no, or 3.0g of plant sterols or plant stanols. Blood samples were taken up to 8h and after 4h subjects received a second shake (without plant sterols or plant stanols). Serum oxyphytosterol concentrations were determined in BHT-enriched EDTA plasma via GC-MS/MS. 7β-OH-campesterol and 7β-OH-sitosterol concentrations were significantly higher after consumption of a mixed meal enriched with plant sterol esters compared to the control and plant stanol ester meal. These increases were seen only after consumption of the second shake, illustrative for a second meal effect. Non-oxidized campesterol and sitosterol concentrations also increased after plant sterol consumption, in parallel with 7β-OH concentrations and again only after the second meal. Apparently, plant sterols and oxyphytosterols follow the same second meal effect as described for dietary cholesterol. However, the question remains whether the increase in oxyphytosterols in the postprandial phase is due to absorption or endogenous formation.


PLOS ONE | 2016

Effects of a Plant Sterol or Stanol Enriched Mixed Meal on Postprandial Lipid Metabolism in Healthy Subjects

Sabine Baumgartner; Ronald P. Mensink; Jogchum Plat

Background Evidence is increasing that plant sterols and stanols not only lower fasting serum low-density lipoprotein concentrations, but also those of triglycerides (TG). Insight into effects of these components on postprandial TG metabolism, an emerging risk factor for cardiovascular disease, is missing. Objective Our objective was to examine the 8-hour postprandial response after consuming plant sterol or stanol enriched margarine as part of a mixed meal. Methods This postprandial study was part of a randomized crossover study in which 42 subjects consumed plant sterol enriched (3 g/d plant sterols), plant stanol enriched (3 g/d plant stanols), and control margarines for 4 weeks. After each period, subjects consumed a shake enriched with 3g plant sterols (sterol period), 3g plant stanols (stanol period) or no addition (control period). Subjects received a second shake with no addition after 4 hours. Results TG and apoB48 incremental areas under the curves (iAUC) of the total (0-8h) and 1st meal response (0-4h) were comparable between the meals and in all age categories (I:18-35y, II:36-52y, III:53-69y). In subjects aged 53-69y, TG iAUC after the 2nd meal (4-8h) was higher in the stanol period as compared with the sterol (63.1±53.0 mmol/L/min; P < 0.01) and the control period (43.2±52.4 mmol/L/min; P < 0.05). ApoB48 iAUC after the 2nd meal was higher after the stanol than after the sterol period (67.1±77.0 mg/L/min; P < 0.05) and tended to be higher than after the control period (43.1±64.5 mg/L/min; P = 0.08) in subjects aged 53-69y. These increased postprandial responses may be due to reduced lipoprotein lipase activity, since postprandial apoCIII/II ratios were increased after stanol consumption compared with the control meal. Conclusion Postprandial TG and apoB48 responses are age-dependently increased after plant stanol consumption, which might be related to a changed clearance of triglyceride-rich lipoproteins. Trial Registration ClinicalTrials.gov NCT01559428


Scientific Reports | 2017

The effects of vitamin E or lipoic acid supplementation on oxyphytosterols in subjects with elevated oxidative stress: a randomized trial

Sabine Baumgartner; Ronald P. Mensink; Guido R.M.M. Haenen; Aalt Bast; Christoph J. Binder; Otto Bekers; Constanze Husche; Dieter Luetjohann; Jogchum Plat

Despite increased serum plant sterol concentrations after consumption of plant sterol enriched margarines, plasma oxyphytosterol concentrations were not increased in healthy subjects. Here, we assessed plasma oxyphytosterol concentrations and whether they are affected by antioxidants in subjects with elevated oxidative stress. Twenty subjects with impaired glucose tolerance (IGT) or type 2 diabetes (DM2) consumed for 4 weeks placebo, vitamin E (804 mg/d) or lipoic acid capsules (600 mg/d). Plasma and blood cell oxyphytosterol and oxycholesterol concentrations were determined in butylated hydroxytoluene-enriched EDTA plasma via GC-MS. Also, markers reflecting oxidative stress and antioxidant capacity were measured. Plasma oxycampesterol and oxysitosterol concentrations were 122% and 83% higher in IGT or DM2 subjects than in healthy subjects, as determined in an earlier study. Vitamin E or lipoic acid supplementation did not reduce plasma oxyphytosterol and oxycholesterol concentrations, or other markers reflecting oxidative stress or antioxidative capacity. Concentrations of different oxyphytosterols correlated within plasma, and within red blood cells and platelets. However, plasma and blood cell oxyphytosterol levels did not correlate. Although plasma oxyphytosterol concentrations are higher in IGT or DM2 subjects than in healthy subjects, 4-weeks vitamin E or lipoic acid supplementation does not lower plasma oxycholesterol or oxyphytosterol concentrations.


The Journal of Steroid Biochemistry and Molecular Biology | 2017

Oxidation of sitosterol and transport of its 7-oxygenated products from different tissues in humans and ApoE knockout mice

Hans-Frieder Schött; Sabine Baumgartner; Constanze Husche; Alexandra Luister; Silvia Friedrichs; Charlotte M. Miller; Florence O. McCarthy; Jogchum Plat; Ulrich Laufs; Oliver Weingärtner; Dieter Lütjohann

The most common phytosterols in the human diet are sitosterol and campesterol, which originate exclusively from plant derived food. These phytosterols are taken up by NPC1L1 transport from the intestine into the enterocytes together with cholesterol and other xenosterols. Phytosterols are selectively pumped back from the enterocytes into the intestinal lumen and on the liver site from hepatocytes into bile by heterodimeric ABCG5/G8 transporters. Like cholesterol, both phytosterols are prone to ring and side chain oxidation. It could be shown that oxyphytosterols, found in atherosclerotic tissue, are most likely of in situ oxidation (Schött et al.; Biochem. Biophys. Res. Commun. 2014 Apr 11;446(3):805-10). However, up to now, the entire mechanism of phytosterol oxidation is not clearly understood. Here, we provide further information about the oxidation of sitosterol and the transport of its oxidation products out of tissue. Our survey includes data of 104 severe aortic stenosis patients that underwent an elective aortic valve cusp replacement. We studied their phytosterol concentrations, as well as absolute and substrate corrected oxyphytosterol levels in plasma and valve cusp tissue. In addition, we also examined phytosterol and oxyphytosterol concentrations in plasma and tissues (from brain and liver) of 10 male ApoE knockout mice. The ratio of 7-oxygenated-sitosterol-to-sitosterol exceeds the ratio for 7-oxygenated-campesterol-to-campesterol in plasma and tissue of both humans and mice. This finding indicates that sitosterol is oxidized to a higher amount than campesterol and that a selective oxidative mechanism might exist which can differentiate between certain phytosterols. Secondly, the concentrations of oxyphytosterols found in plasma and tissue support the idea that oxysitosterols are preferably transported out of individual tissues. Selective oxidation of sitosterol and preferred transport of sitosterol oxidation products out of tissue seem to be a metabolic pathway of forced sitosterol clearance from tissue compartments.


European Journal of Clinical Nutrition | 2017

Infant milk fat droplet size and coating affect postprandial responses in healthy adult men: a proof-of-concept study

Sabine Baumgartner; B J M van de Heijning; Dennis Acton; Ronald P. Mensink

Background/Objectives:Fat droplets in human milk (HM) are larger and surrounded by a phospholipid membrane compared with infant milk formulas (IMF). Since the physical structure of fat droplets might affect digestion and postprandial metabolism, an IMF was developed more mimicking HM lipid structure than current IMF.Subjects/Methods:A randomised, double-blind, crossover study was performed in 29 fasted healthy men (aged 18–25 years, BMI: 18–25 kg/m2) to compare 5-hour postprandial responses after consumption of an experimental IMF (Concept, Nuturis) with a current IMF (Control).Results:Postprandial triacylglycerol (TAG) concentrations tended to increase faster after intake of Concept IMF (P=0.054), but peaked 3 h after intakes at similar concentrations. ApoB48 increased steadily and peaked 3 h after consumption. Increases in plasma glucose concentrations were comparable, but peak concentrations were reached faster after consumption of Concept IMF (P<0.05). Peak insulin concentrations were higher and reached earlier after intake of Concept IMF, causing a sharper decremental glucose rebound (P<0.05) and an earlier time to nadir in non-esterified fatty acid (NEFA) concentrations (P<0.01). Changes in plasma amino acids (AA), apoB100 and apoA1 were comparable. The incremental or decremental areas under-the-curve did not differ between Concept and Control IMF. Satiety scores and changes in the satiety hormones ghrelin and peptide YY were comparable, while cholecystokinin responses were earlier and higher after consumption of Control IMF (P<0.05).Conclusions:This proof-of-concept study suggests that fats and carbohydrates from the Concept IMF with larger and phospholipid-coated fat droplets are more rapidly absorbed than those from the current IMF.


Chemistry and Physics of Lipids | 2017

The effects of amoxicillin and vancomycin on parameters reflecting cholesterol metabolism

Sabine Baumgartner; Dorien Reijnders; Maurice Konings; Albert K. Groen; Dieter Lütjohann; Gijs H. Goossens; Ellen E. Blaak; Jogchum Plat

BACKGROUND Changes in the microbiota composition have been implicated in the development of obesity and type 2 diabetes. However, not much is known on the involvement of gut microbiota in lipid and cholesterol metabolism. In addition, the gut microbiota might also be a potential source of plasma oxyphytosterol and oxycholesterol concentrations (oxidation products of plant sterols and cholesterol). Therefore, the aim of this study was to modulate the gut microbiota by antibiotic therapy to investigate effects on parameters reflecting cholesterol metabolism and oxyphytosterol concentrations. DESIGN A randomized, double blind, placebo-controlled trial was performed in which 55 obese, pre-diabetic men received oral amoxicillin (broad-spectrum antibiotic), vancomycin (antibiotic directed against Gram-positive bacteria) or placebo (microcrystalline cellulose) capsules for 7days (1500mg/day). Plasma lipid and lipoprotein, non-cholesterol sterol, bile acid and oxy(phyto)sterol concentrations were determined at baseline and after 1-week intervention. RESULTS Plasma secondary bile acids correlated negatively with cholestanol (marker for cholesterol absorption, r=-0.367; P<0.05) and positively with lathosterol concentrations (marker for cholesterol synthesis, r=0.430; P<0.05). Fasting plasma secondary bile acid concentrations were reduced after vancomycin treatment as compared to placebo treatment (-0.24±0.22μmol/L vs. -0.08±0.29μmol/L; P<0.01). Vancomycin and amoxicillin treatment did not affect markers for cholesterol metabolism, plasma TAG, total cholesterol, LDL-C or HDL-C concentrations as compared to placebo. In addition, both antibiotic treatments did not affect individual isoforms or total plasma oxyphytosterol or oxycholesterol concentrations. CONCLUSION Despite strong correlations between plasma bile acid concentrations and cholesterol metabolism (synthesis and absorption), amoxicillin and vancomycin treatment for 7days did not affect plasma lipid and lipoprotein, plasma non-cholesterol sterol and oxy(phyto)sterol concentrations in obese, pre-diabetic men.

Collaboration


Dive into the Sabine Baumgartner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aalt Bast

Maastricht University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge