Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sabine Castano is active.

Publication


Featured researches published by Sabine Castano.


Biochimica et Biophysica Acta | 1999

Structure, orientation and affinity for interfaces and lipids of ideally amphipathic lytic LiKj(i=2j) peptides

Sabine Castano; Bernard Desbat; Michel Laguerre; Jean Dufourcq

The behavior of lytic ideally amphipathic peptides of generic composition LiKj(i=2j) and named LKn, n=i+j, is investigated in situ by the monolayer technique combined with the recently developed polarization modulation IR spectroscopy (PMIRRAS). A change in the secondary structure occurs versus peptide length. Peptides longer than 12 residues fold into alpha-helices at interfaces as expected from their design, while enough shorter peptides, from 9 down to 5 residues, form intermolecular antiparallel beta-sheets. Analysis of experimental and calculated PMIRRAS spectra in the amide I and II regions show that peptides are flat oriented at the interfaces. Structures and orientation are preserved whatever the nature of the interface, air/water or DMPC monolayer, and the lateral pressure. Peptide partition constants, KaffPi, are estimated from isobar surface increases of DMPC monolayers. They strongly increase when Pi decreases from 30 mN/m to 8 mN/m and they vary with peptide length with an optimum for 12 residues. This non-monotonous dependence fits with data obtained in bilayers and follows the hemolytic activity of the peptides. Lipid perturbations due to peptide insertion essentially detected on the PO4- and CO bands indicate disorder of the lipid head groups. Lysis induced on membranes by such peptides is proposed to first result from their flat asymmetric insertion.


Biochemistry | 2008

Aggregation of Cateslytin β-Sheets on Negatively Charged Lipids Promotes Rigid Membrane Domains. A New Mode of Action for Antimicrobial Peptides?

Frantz Jean-Francois; Sabine Castano; Bernard Desbat; Benoit Odaert; Michel Roux; Marie-Hélène Metz-Boutigue; Erick J. Dufourc

Cateslytin, a positively charged (5+) arginine-rich antimicrobial peptide (bCgA, RSMRLSFRARGYGFR), was chemically synthesized and studied against membranes that mimic bacterial or mammalian systems. Circular dichroism, polarized attenuated total reflection infrared spectroscopy, (1)H high-resolution MAS NMR, and (2)H and (31)P solid state NMR were used to follow the interaction from peptide and membrane points of view. Cateslytin, which is unstructured in solution, is converted into antiparallel beta-sheets that aggregate mainly flat at the surface of negatively charged bacterial mimetic membranes. Arginine residues are involved in the binding to negatively charged lipids. Following the interaction of the cateslytin peptide, rigid and thicker membrane domains enriched in negatively charged lipids are found. Much less interaction is detected with neutral mammalian model membranes, as reflected by only minor percentages of beta-sheets or helices in the peptide secondary structure. No membrane destruction was detected for both bacterial and mammalian model membranes. A molecular model is proposed in which zones of different rigidity and thickness bring about phase boundary defects that ultimately lead to permeability induction and peptide crossing through bacterial membranes.


Biochimica et Biophysica Acta | 2000

Ideally amphipathic β-sheeted peptides at interfaces: structure, orientation, affinities for lipids and hemolytic activity of (KL)mK peptides

Sabine Castano; Bernard Desbat; Jean Dufourcq

Abstract Designed to model ideally amphipathic β-sheets, the minimalist linear (KL)mK peptides (m=4–7) were synthesized and proved to form stable films at the air/water interface, they insert into compressed dimyristoylphosphatidylcholine monolayers and interact with egg phosphatidylcholine vesicles. Whatever the interface or the lateral pressure applied to the films, FT-IR and polarization-modulated IRRAS spectroscopy developed in situ on the films indicated that all the peptides totally fold into intermolecular antiparallel β-sheets. Calculated spectra of the amide region allowed us to define the orientation of the β-strands compared to the interface. It is concluded that such β-sheets remain flat-oriented without deep perturbation of zwitterionic phospholipids. Dansyl labelling at the N-terminus indicates that all the peptides are monomeric at a low concentration in aqueous buffer and bind to lipids with similar Dns burying. The affinities for zwitterionic lecithin mono- and bilayers, quantitatively estimated from buffer to lipid partition constants, monotonically increased with peptide length, indicating that hydrophobicity is a limiting parameter for lipid and membrane affinities. Peptides induced permeability increases on zwitterionic liposomes, they are strongly hemolytic towards human erythrocytes and their activity increases concurrently with length. Taking into account the lipid affinity, a hemolytic efficiency can be defined: at the same amount of peptide bound, this efficiency strongly increases with the peptide length. It is proposed that the first determinant step of membrane disturbance is the invasion of the outer membrane leaflet by these ideally amphipathic β-sheeted structures lying flat at the interface, like large rafts depending on the number of β-strands.


Biochimica et Biophysica Acta | 1999

The amphipathic helix concept: length effects on ideally amphipathic LiKj(i=2j) peptides to acquire optimal hemolytic activity

Sabine Castano; Isabelle Cornut; Klaus Buttner; Jean-Louis Dasseux; Jean Dufourcq

In a minimalist approach to modeling lytic toxins, amphipathic peptides of LiKj with i=2j composition and whose length varies from 5 to 22 residues were studied for their ability to induce hemolysis and lipid vesicle leakage. Their sequences were designed to generate ideally amphipathic alpha helices with a single K residue per putative turn. All the peptides were lytic, their activities varying by more than a factor of 103 from the shortest 5-residue-long peptide (5-mer) to the longest 22-mer. However, there was no monotonous increase versus length. The 15-mer was as active as the 22-mer and even more than melittin which is used as standard. Partition coefficients from the buffer to the membrane increased in relation to length up to 12 residues, then weakly decreased to reach a plateau, while they were expected to increase monotonously with peptide length and hydrophobicity as revealed from HPLC retention times. Fluorescence labeling by a dansyl group at the N-terminus, or by a W near the CO-terminus, show that up to 12 residues, the peptides were essentially monomeric while longer peptides strongly aggregated in the solution. Lipid affinity was then controlled by peptide length and was found to be limited by folding and self-association in buffer. The lytic activity resulted both from lipid affinity, which varied by a factor of 20-fold, and from efficiency in disturbing the membrane when bound, the latter steeply and monotonously increasing with length. The 15-residue-long peptide, KLLKLLLKLLLKLLK, had the optimal size for highest lytic activity. The shallow location of the fluorescent labels in the lipids is further evidence for a model of peptides remaining flat at the interface.


Biochimica et Biophysica Acta | 2014

A proapoptotic peptide conjugated to penetratin selectively inhibits tumor cell growth

Isabel D. Alves; Manon Carré; Marie-Pierre Montero; Sabine Castano; Sophie Lecomte; Rodrigue Marquant; Pascaline Lécorché; Fabienne Burlina; Christophe Schatz; Sandrine Sagan; Gérard Chassaing; Diane Braguer; Solange Lavielle

The peptide KLA (acetyl-(KLAKLAK)2-NH2), which is rather non toxic for eukaryotic cell lines, becomes active when coupled to the cell penetrating peptide, penetratin (Pen), by a disulfide bridge. Remarkably, the conjugate KLA-Pen is cytotoxic, at low micromolar concentrations, against a panel of seven human tumor cell lines of various tissue origins, including cells resistant to conventional chemotherapy agents but not to normal human cell lines. Live microscopy on cells possessing fluorescent labeled mitochondria shows that in tumor cells, KLA-Pen had a strong impact on mitochondria tubular organization instantly resulting in their aggregation, while the unconjugated KLA and pen peptides had no effect. But, mitochondria in various normal cells were not affected by KLA-Pen. The interaction with membrane models of KLA-Pen, KLA and penetratin were studied using dynamic light scattering, calorimetry, plasmon resonance, circular dichroism and ATR-FTIR to unveil the mode of action of the conjugate. To understand the selectivity of the conjugate towards tumor cell lines and its action on mitochondria, lipid model systems composed of zwitterionic lipids were used as mimics of normal cell membranes and anionic lipids as mimics of tumor cell and mitochondria membrane. A very distinct mode of interaction with the two model systems was observed. KLA-Pen may exert its deleterious and selective action on cancer cells by the formation of pores with an oblique membrane orientation and establishment of important hydrophobic interactions. These results suggest that KLA-Pen could be a lead compound for the design of cancer therapeutics.


Langmuir | 2008

Organization of β-Cyclodextrin under Pure Cholesterol, DMPC, or DMPG and Mixed Cholesterol/Phospholipid Monolayers

J. Mascetti; Sabine Castano; D. Cavagnat; Bernard Desbat

The complexation of beta-cyclodextrin with monolayers of cholesterol, DMPC, DMPG, and mixtures of those lipids has been studied using Brewster microscopy, PMIRRAS, and ab initio calculations. An oriented channel-like structure of beta-cyclodextrin, perpendicular to the air/water interface, was observed when some cholesterol molecules were present at the interface. This channel structure formation is the first step in the cholesterol dissolution in the subphase. With pure DMPC and DMPG monolayers, weaker, less organized complexes are formed, but they disappear almost completely at high surface pressure, and only a small amount of phospholipid is dissolved in the subphase.


Biochemistry | 2009

Comparative Study of Two Plasticins: Specificity, Interfacial Behavior, and Bactericidal Activity

Pierre Joanne; Mélanie Falord; Olivier Chesneau; Claire Lacombe; Sabine Castano; Bernard Desbat; Constance Auvynet; Pierre Nicolas; Tarek Msadek; Chahrazade El Amri

A comparative study was designed to evaluate the staphylococcidal efficiency of two sequence-related plasticins from the dermaseptin superfamily we screened previously. Their bactericidal activities against Staphylococcus aureus as well as their chemotactic potential were investigated. The impact of the GraS/GraR two-component system involved in regulating resistance to cationic antimicrobial peptides (CAMPs) was evaluated. Membrane disturbing activity was quantified by membrane depolarization assays using the diS-C3 probe and by membrane integrity assays measuring beta-galactosidase activity with recombinant strain ST1065 reflecting compromised membranes and cytoplasmic leakage. Interactions of plasticins with membrane models composed of either zwitterionic lipids mimicking the S. aureus membrane of CAMP-resistant strains or anionic lipids mimicking the negative charge-depleted membrane of CAMP-sensitive strains were analyzed by jointed Brewster angle microscopy (BAM), polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), and differential scanning calorimetry (DSC) to yield detailed information about the macroscopic interfacial organization, in situ conformation, orientation of the peptides at the lipid-solvent interface, and lipid-phase disturbance. We clearly found evidence of distinct interfacial behaviors of plasticins we linked to the distribution of charges along the peptides and structural interconversion properties at the membrane interface. Our results also suggest that amidation might play a key role in GraS/GraR-mediated CAMP sensing at the bacterial surface.


European Biophysics Journal | 2007

Variability in secondary structure of the antimicrobial peptide Cateslytin in powder, solution, DPC micelles and at the air-water interface

Frantz Jean-Francois; Lucie Khemtémourian; Benoit Odaert; Sabine Castano; Axelle Grélard; Claude Manigand; Katell Bathany; Marie-Hélène Metz-Boutigue; Erick J. Dufourc

Cateslytin (bCGA 344RSMRLSFRARGYGFR358), a five positively charged 15 amino-acid residues arginine-rich antimicrobial peptide, was synthesized using a very efficient procedure leading to high yields and to a 99% purity as determined by HPLC and mass spectrometry. Circular dichroism, polarized attenuated total reflectance fourier transformed infrared, polarization modulation infrared reflection Absorption spectroscopies and proton two-dimensional NMR revealed the flexibility of such a peptide. Whereas being mostly disordered as a dry powder or in water solution, the peptide acquires a α-helical character in the “membrane mimicking” solvent trifuoroethanol. In zwitterionic micelles of dodecylphophatidylcholine the helical character is retained but to a lesser extent, the peptide returning mainly to its disordered state. A β-sheet contribution of almost 100% is detected at the air–water interface. Such conformational plasticity is discussed regarding the antimicrobial action of Cateslytin.


Biochimica et Biophysica Acta | 2015

The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides

Marie-Lise Jobin; Marine Blanchet; Sarah Henry; Stéphane Chaignepain; Claude Manigand; Sabine Castano; Sophie Lecomte; Fabienne Burlina; Sandrine Sagan; Isabel D. Alves

Cell-penetrating peptides (CPP) are able to efficiently transport cargos across cell membranes without being cytotoxic to cells, thus present a great potential in drug delivery and diagnosis. While the role of cationic residues in CPPs has been well studied, that of Trp is still not clear. Herein 7 peptide analogs of RW9 (RRWWRRWRR, an efficient CPP) were synthesized in which Trp were systematically replaced by Phe residues. Quantification of cellular uptake reveals that substitution of Trp by Phe strongly reduces the internalization of all peptides despite the fact that they strongly accumulate in the cell membrane. Cellular internalization and biophysical studies show that not only the number of Trp residues but also their positioning in the helix and the size of the hydrophobic face they form are important for their internalization efficacy, the highest uptake occurring for the analog with 3 Trp residues. Using CD and ATR-FTIR spectroscopy we observe that all peptides became structured in contact with lipids, mainly in α-helix. Intrinsic tryptophan fluorescence studies indicate that all peptides partition in the membrane in about the same manner (Kp~10(5)) and that they are located just below the lipid headgroups (~10 Å) with slightly different insertion depths for the different analogs. Plasmon Waveguide Resonance studies reveal a direct correlation between the number of Trp residues and the reversibility of the interaction following membrane washing. Thus a more interfacial location of the CPP renders the interaction with the membrane more adjustable and transitory enhancing its internalization ability.


Biochimica et Biophysica Acta | 2009

Reversible transition between α-helix and β-sheet conformation of a transmembrane domain

Wissam Yassine; Nada Taib; Silvina Federman; Alexandra Milochau; Sabine Castano; Walid Sbi; Claude Manigand; Michel Laguerre; Bernard Desbat; Reiko Oda; Jochen Lang

Despite the important functions of protein transmembrane domains, their structure and dynamics are often scarcely known. The SNARE proteins VAMP/synaptobrevin and syntaxin 1 are implicated in membrane fusion. Using different spectroscopic approaches we observed a marked sensitivity of their transmembrane domain structure in regard to the lipid/peptide ratio. In the dilute condition, peptides corresponding to the complete transmembrane domain fold into an alpha-helix inserted at approximately 35 degrees to the normal of the membranes, an observation in line with molecular simulations. Upon an increase in the peptide/lipid ratio, the peptides readily exhibited transition to beta-sheet structure. Moreover, the insertion angle of these beta-sheets increased to 54 degrees and was accompanied by a derangement of lipid acyl chains. For both proteins the transition from alpha-helix to beta-sheet was reversible under certain conditions by increasing the peptide/lipid ratio. This phenomenon was observed in different model systems including multibilayers and small unilamellar vesicles. In addition, differences in peptide structure and transitions were observed when using distinct lipids (DMPC, DPPC or DOPC) thus indicating parameters influencing transmembrane domain structure and conversion from helices to sheets. The putative functional consequences of this unprecedented dynamic behavior of a transmembrane domain are discussed.

Collaboration


Dive into the Sabine Castano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Dufourcq

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Michel Laguerre

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Frédéric Peruch

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge