Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sabine Elowe is active.

Publication


Featured researches published by Sabine Elowe.


Molecular and Cellular Biology | 2001

Downregulation of the Ras–Mitogen-Activated Protein Kinase Pathway by the EphB2 Receptor Tyrosine Kinase Is Required for Ephrin-Induced Neurite Retraction

Sabine Elowe; Sacha Holland; Sarang Kulkarni; Tony Pawson

ABSTRACT Activation of the EphB2 receptor tyrosine kinase by clustered ephrin-B1 induces growth cone collapse and neurite retraction in differentiated NG108 neuronal cells. We have investigated the cytoplasmic signaling events associated with EphB2-induced cytoskeletal reorganization in these neuronal cells. We find that unlike other receptor tyrosine kinases, EphB2 induces a pronounced downregulation of GTP-bound Ras and consequently of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway. A similar inhibition of the Ras-MAPK pathway was observed on stimulation of endogenous EphB2 in COS-1 cells. Inactivation of Ras, induced by ephrin B1 stimulation of NG108 neuronal cells, requires EphB2 tyrosine kinase activity and is blocked by a truncated form of p120-Ras GTPase-activating protein (p120-RasGAP), suggesting that EphB2 signals through the SH2 domain protein p120-RasGAP to inhibit the Ras-MAPK pathway. Suppression of Ras activity appears functionally important, since expression of a constitutively active variant of Ras impaired the ability of EphB2 to induce neurite retraction. In addition, EphB2 attenuated the elevation in ERK activation induced by attachment of NG108 cells to fibronectin, indicating that the EphB2 receptor can modulate integrin signaling to the Ras GTPase. These results suggest that a primary function of EphB2, a member of the most populous family of receptor tyrosine kinases, is to inactivate the Ras-MAPK pathway in a fashion that contributes to cytoskeletal reorganization and adhesion responses in neuronal growth cones.


Biochemical Journal | 2014

A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties

James M. Murphy; Qingwei Zhang; Samuel N. Young; Michael L. Reese; Fiona P. Bailey; Patrick A. Eyers; Daniela Ungureanu; Henrik Hammarén; Olli Silvennoinen; Leila N. Varghese; Kelan Chen; Anne Tripaydonis; Natalia Jura; Koichi Fukuda; Jun Qin; Zachary L. Nimchuk; Mary Beth Mudgett; Sabine Elowe; Christine L. Gee; Ling Liu; Roger J. Daly; Gerard Manning; Jeffrey J. Babon; Isabelle S. Lucet

Protein kinase-like domains that lack conserved residues known to catalyse phosphoryl transfer, termed pseudokinases, have emerged as important signalling domains across all kingdoms of life. Although predicted to function principally as catalysis-independent protein-interaction modules, several pseudokinase domains have been attributed unexpected catalytic functions, often amid controversy. We established a thermal-shift assay as a benchmark technique to define the nucleotide-binding properties of kinase-like domains. Unlike in vitro kinase assays, this assay is insensitive to the presence of minor quantities of contaminating kinases that may otherwise lead to incorrect attribution of catalytic functions to pseudokinases. We demonstrated the utility of this method by classifying 31 diverse pseudokinase domains into four groups: devoid of detectable nucleotide or cation binding; cation-independent nucleotide binding; cation binding; and nucleotide binding enhanced by cations. Whereas nine pseudokinases bound ATP in a divalent cation-dependent manner, over half of those examined did not detectably bind nucleotides, illustrating that pseudokinase domains predominantly function as non-catalytic protein-interaction modules within signalling networks and that only a small subset is potentially catalytically active. We propose that henceforth the thermal-shift assay be adopted as the standard technique for establishing the nucleotide-binding and catalytic potential of kinase-like domains.


Molecular and Cellular Biology | 2011

Bub1 and BubR1: at the Interface between Chromosome Attachment and the Spindle Checkpoint

Sabine Elowe

ABSTRACT The spindle checkpoint ensures genome fidelity by temporarily halting chromosome segregation and the ensuing mitotic exit until the last kinetochore is productively attached to the mitotic spindle. At the interface between proper chromosome attachment and the metaphase-to-anaphase transition are the mammalian spindle checkpoint kinases. Compelling evidence indicates that the checkpoint kinases Bub1 and BubR1 have the added task of regulating kinetochore-microtubule attachments. However, the debate on the requirement of kinase activity is in full swing. This minireview summarizes recent advances in our understanding of the core spindle checkpoint kinases Bub1 and BubR1 and considers evidence that supports and opposes the role of kinase activity in regulating their functions during mitosis.


Journal of Biological Chemistry | 2012

Characterization of Spindle Checkpoint Kinase Mps1 Reveals Domain with Functional and Structural Similarities to Tetratricopeptide Repeat Motifs of Bub1 and BubR1 Checkpoint Kinases

Semin Lee; Philippe Thebault; Luca Freschi; Sylvie Beaufils; Tom L. Blundell; Christian R. Landry; Victor M. Bolanos-Garcia; Sabine Elowe

Background: The N terminus is required for localization and functions of Mps1, Bub1, and BubR1 kinases. Results: A novel Bub1/BubR1-related TPR motif is identified in Mps1 and is required for kinase activity. Conclusion: TPR domain of Mps1 regulates kinase activity, Mps1 chromosome alignment, and checkpoint functions. Significance: Identification of a novel domain in Mps1 enhances our understanding of its contribution to maintaining genome integrity. Kinetochore targeting of the mitotic kinases Bub1, BubR1, and Mps1 has been implicated in efficient execution of their functions in the spindle checkpoint, the self-monitoring system of the eukaryotic cell cycle that ensures chromosome segregation occurs with high fidelity. In all three kinases, kinetochore docking is mediated by the N-terminal region of the protein. Deletions within this region result in checkpoint failure and chromosome segregation defects. Here, we use an interdisciplinary approach that includes biophysical, biochemical, cell biological, and bioinformatics methods to study the N-terminal region of human Mps1. We report the identification of a tandem repeat of the tetratricopeptide repeat (TPR) motif in the N-terminal kinetochore binding region of Mps1, with close homology to the tandem TPR motif of Bub1 and BubR1. Phylogenetic analysis indicates that TPR Mps1 was acquired after the split between deutorostomes and protostomes, as it is distinguishable in chordates and echinoderms. Overexpression of TPR Mps1 resulted in decreased efficiency of both chromosome alignment and mitotic arrest, likely through displacement of endogenous Mps1 from the kinetochore and decreased Mps1 catalytic activity. Taken together, our multidisciplinary strategy provides new insights into the evolution, structural organization, and function of Mps1 N-terminal region.


Nature Communications | 2013

PI 3-kinase-dependent phosphorylation of Plk1–Ser99 promotes association with 14-3-3γ and is required for metaphase–anaphase transition

Kousuke Kasahara; Hidemasa Goto; Ichiro Izawa; Tohru Kiyono; Nobumoto Watanabe; Sabine Elowe; Erich A. Nigg; Masaki Inagaki

Polo-like kinase 1 (Plk1) controls multiple aspects of mitosis and is activated through its phosphorylation at Thr210. Here we identify Ser99 on Plk1 as a novel mitosis-specific phosphorylation site, which operates independently of Plk1–Thr210 phosphorylation. Plk1–Ser99 phosphorylation creates a docking site for 14-3-3γ, and this interaction stimulates the catalytic activity of Plk1. Knockdown of 14-3-3γ or replacement of wild-type (WT) Plk1 by a Ser99-phospho-blocking mutant leads to a prometaphase/metaphase-like arrest due to the activation of the spindle assembly checkpoint. Inhibition of phosphatidylinositol 3-kinase (PI3K) and Akt significantly reduces the level of Plk1–Ser99 phosphorylation and delays metaphase to anaphase transition. Plk1–Ser99 phosphorylation requires not only Akt activity but also protein(s) associated with Plk1 in a mitosis-specific manner. Therefore, mitotic Plk1 activity is regulated not only by Plk1–Thr210 phosphorylation, but also by Plk1 binding to 14-3-3γ following Plk1–Ser99 phosphorylation downstream of the PI3K–Akt signalling pathway. This novel Plk1 activation pathway controls proper progression from metaphase to anaphase.


Journal of Cell Science | 2014

The dynamic protein Knl1 – a kinetochore rendezvous

Priyanka Ghongane; Maria Kapanidou; Adeel Asghar; Sabine Elowe; Victor M. Bolanos-Garcia

ABSTRACT Knl1 (also known as CASC5, UniProt Q8NG31) is an evolutionarily conserved scaffolding protein that is required for proper kinetochore assembly, spindle assembly checkpoint (SAC) function and chromosome congression. A number of recent reports have confirmed the prominence of Knl1 in these processes and provided molecular details and structural features that dictate Knl1 functions in higher organisms. Knl1 recruits SAC components to the kinetochore and is the substrate of certain protein kinases and phosphatases, the interplay of which ensures the exquisite regulation of the aforementioned processes. In this Commentary, we discuss the overall domain organization of Knl1 and the roles of this protein as a versatile docking platform. We present emerging roles of the protein interaction motifs present in Knl1, including the RVSF, SILK, MELT and KI motifs, and their role in the recruitment and regulation of the SAC proteins Bub1, BubR1, Bub3 and Aurora B. Finally, we explore how the regions of low structural complexity that characterize Knl1 are implicated in the cooperative interactions that mediate binding partner recognition and scaffolding activity by Knl1.


PLOS Genetics | 2015

A Role for the Chaperone Complex BAG3-HSPB8 in Actin Dynamics, Spindle Orientation and Proper Chromosome Segregation during Mitosis.

Margit Fuchs; Carole Luthold; Solenn M. Guilbert; Alice Anaïs Varlet; Herman Lambert; Alexandra Jetté; Sabine Elowe; Jacques Landry; Josée N. Lavoie

The co-chaperone BAG3, in complex with the heat shock protein HSPB8, plays a role in protein quality control during mechanical strain. It is part of a multichaperone complex that senses damaged cytoskeletal proteins and orchestrates their seclusion and/or degradation by selective autophagy. Here we describe a novel role for the BAG3-HSPB8 complex in mitosis, a process involving profound changes in cell tension homeostasis. BAG3 is hyperphosphorylated at mitotic entry and localizes to centrosomal regions. BAG3 regulates, in an HSPB8-dependent manner, the timely congression of chromosomes to the metaphase plate by influencing the three-dimensional positioning of the mitotic spindle. Depletion of BAG3 caused defects in cell rounding at metaphase and dramatic blebbing of the cortex associated with abnormal spindle rotations. Similar defects were observed upon silencing of the autophagic receptor p62/SQSTM1 that contributes to BAG3-mediated selective autophagy pathway. Mitotic cells depleted of BAG3, HSPB8 or p62/SQSTM1 exhibited disorganized actin-rich retraction fibres, which are proposed to guide spindle orientation. Proper spindle positioning was rescued in BAG3-depleted cells upon addition of the lectin concanavalin A, which restores cortex rigidity. Together, our findings suggest the existence of a so-far unrecognized quality control mechanism involving BAG3, HSPB8 and p62/SQSTM1 for accurate remodelling of actin-based mitotic structures that guide spindle orientation.


Biochemical Journal | 2012

Structural and functional insights into the role of the N-terminal Mps1 TPR domain in the SAC (spindle assembly checkpoint).

Philippe Thebault; Dimitri Y. Chirgadze; Zhen Dou; Tom L. Blundell; Sabine Elowe; Victor M. Bolanos-Garcia

The SAC (spindle assembly checkpoint) is a surveillance system that ensures the timely and accurate transmission of the genetic material to offspring. The process implies kinetochore targeting of the mitotic kinases Bub1 (budding uninhibited by benzamidine 1), BubR1 (Bub1 related) and Mps1 (monopolar spindle 1), which is mediated by the N-terminus of each kinase. In the present study we report the 1.8 Å (1 Å=0.1 nm) crystal structure of the TPR (tetratricopeptide repeat) domain in the N-terminal region of human Mps1. The structure reveals an overall high similarity to the TPR motif of the mitotic checkpoint kinases Bub1 and BubR1, and a number of unique features that include the absence of the binding site for the kinetochore structural component KNL1 (kinetochore-null 1; blinkin), and determinants of dimerization. Moreover, we show that a stretch of amino acids at the very N-terminus of Mps1 is required for dimer formation, and that interfering with dimerization results in mislocalization and misregulation of kinase activity. The results of the present study provide an important insight into the molecular details of the mitotic functions of Mps1 including features that dictate substrate selectivity and kinetochore docking.


Nature Communications | 2015

Bub1 autophosphorylation feeds back to regulate kinetochore docking and promote localized substrate phosphorylation.

Adeel Asghar; Audrey Lajeunesse; Kalyan Dulla; Guillaume Combes; Philippe Thebault; Erich A. Nigg; Sabine Elowe

During mitosis, Bub1 kinase phosphorylates histone H2A-T120 to promote centromere sister chromatid cohesion through recruitment of shugoshin (Sgo) proteins. The regulation and dynamics of H2A-T120 phosphorylation are poorly understood. Using quantitative phosphoproteomics we show that Bub1 is autophosphorylated at numerous sites. We confirm mitosis-specific autophosphorylation of a several residues and show that Bub1 activation is primed in interphase but fully achieved only in mitosis. Mutation of a single autophosphorylation site T589 alters kinetochore turnover of Bub1 and results in uniform H2A-T120 phosphorylation and Sgo recruitment along chromosome arms. Consequently, improper sister chromatid resolution and chromosome segregation errors are observed. Kinetochore tethering of Bub1-T589A refocuses H2A-T120 phosphorylation and Sgo1 to centromeres. Recruitment of the Bub1-Bub3-BubR1 axis to kinetochores has recently been extensively studied. Our data provide novel insight into the regulation and kinetochore residency of Bub1 and indicate that its localization is dynamic and tightly controlled through feedback autophosphorylation.


Science Signaling | 2016

Mitotic phosphotyrosine network analysis reveals that tyrosine phosphorylation regulates Polo-like kinase 1 (PLK1)

Danielle Caron; Dominic P. Byrne; Philippe Thebault; Denis Soulet; Christian R. Landry; Patrick A. Eyers; Sabine Elowe

Tyrosine phosphorylation regulates a serine/threonine kinase that controls progression through mitosis. Tyrosine phosphorylation controls mitosis after all The cell cycle is a carefully controlled process in which serine/threonine kinases play a large role. Abnormal progression or attenuation of cell cycling is implicated in the pathogenesis of various diseases, such as cancer, myocardial infarction, stroke, atherosclerosis, infection, inflammation, and neurodegenerative disorders. Caron et al. analyzed public databases for information about protein localization and tyrosine phosphorylation status in mitotic cells and devised a mitosis-associated tyrosine phosphorylation network. The extent of this network predicted that tyrosine-targeted phosphorylation plays a larger role in mitosis than previously appreciated. For example, in their network generated from data mining and in cultured cells, tyrosine phosphorylation decreased activation of Polo-like kinase 1 (PLK1), a serine/threonine kinase that promotes chromosome separation during anaphase and is often excessively abundant in cancers. The network provides a wealth of targets for exploration into cell cycle control in physiology and disease. Tyrosine phosphorylation is closely associated with cell proliferation. During the cell cycle, serine and threonine phosphorylation plays the leading role, and such phosphorylation events are most dynamic during the mitotic phase of the cell cycle. However, mitotic phosphotyrosine is not well characterized. Although a few functionally-relevant mitotic phosphotyrosine sites have been characterized, evidence suggests that this modification may be more prevalent than previously appreciated. Here, we examined tyrosine phosphorylation in mitotic human cells including those on spindle-associated proteins.? Database mining confirmed ~2000 mitotic phosphotyrosine sites, and network analysis revealed a number of subnetworks that were enriched in tyrosine-phosphorylated proteins, including components of the kinetochore or spindle and SRC family kinases. We identified Polo-like kinase 1 (PLK1), a major signaling hub in the spindle subnetwork, as phosphorylated at the conserved Tyr217 in the kinase domain. Substitution of Tyr217 with a phosphomimetic residue eliminated PLK1 activity in vitro and in cells. Further analysis showed that Tyr217 phosphorylation reduced the phosphorylation of Thr210 in the activation loop, a phosphorylation event necessary for PLK1 activity. Our data indicate that mitotic tyrosine phosphorylation regulated a key serine/threonine kinase hub in mitotic cells and suggested that spatially separating tyrosine phosphorylation events can reveal previously unrecognized regulatory events and complexes associated with specific structures of the cell cycle.

Collaboration


Dive into the Sabine Elowe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge