Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sabine Francois is active.

Publication


Featured researches published by Sabine Francois.


Stem Cells | 2006

Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs : A study of their quantitative distribution after irradiation damage

Sabine Francois; Morad Bensidhoum; Moubarak Mouiseddine; Christelle Mazurier; Bénédicte Allenet; Alexandra Sémont; Johanna Frick; Amandine Saché; Sandrine Bouchet; Dominique Thierry; Patrick Gourmelon; Gorin Nc; Alain Chapel

Mesenchymal stem cells (MSCs) have been shown to migrate to various tissues. There is little information on the fate and potential therapeutic efficacy of the reinfusion of MSCs following total body irradiation (TBI). We addressed this question using human MSC (hMSCs) infused to nonobese diabetic/ severe combined immunodeficient (NOD/SCID) mice submitted to TBI. Further, we tested the impact of additional local irradiation (ALI) superimposed to TBI, as a model of accidental irradiation. NOD/SCID mice were transplanted with hM‐SCs. Group 1 was not irradiated before receiving hMSC infusion. Group 2 received only TBI at a dose of 3.5 Gy, group 3 received local irradiation to the abdomen at a dose of 4.5 Gy in addition to TBI, and group 4 received local irradiation to the leg at 26.5 Gy in addition to TBI. Fifteen days after irradiation, quantitative and spatial distribution of the hMSCs were studied. Histological analysis of mouse tissues confirmed the presence of radio‐induced lesions in the irradiated fields. Following their infusion into nonirradiated animals, hMSCs homed at a very low level to various tissues (lung, bone marrow, and muscles) and no significant engraftment was found in other organs. TBI induced an increase of engraftment levels of hMSCs in the brain, heart, bone marrow, and muscles. Abdominal irradiation (AI) as compared with leg irradiation (LI) increased hMSC engraftment in the exposed area (the gut, liver, and spleen). Hind LI as compared with AI increased hMSC engraftment in the exposed area (skin, quadriceps, and muscles). An increase of hMSC engraftment in organs outside the fields of the ALI was also observed. Conversely, following LI, hMSC engraftment was increased in the brain as compared with AI. This study shows that engraftment of hMSCs in NOD/ SCID mice with significantly increased in response to tissue injuries following TBI with or without ALI. ALI induced an increase of the level of engraftment at sites outside the local irradiation field, thus suggesting a distant (abscopal) effect of radiation damage. This work supports the use of MSCs to repair damaged normal tissues following accidental irradiation and possibly in patients submitted to radiotherapy.


Advances in Experimental Medicine and Biology | 2006

Mesenchymal Stem Cells Increase Self-Renewal of Small Intestinal Epithelium and Accelerate Structural Recovery after Radiation Injury

Alexandra Sémont; Sabine Francois; Moubarak Mouiseddine; Agnès François; Amandine Saché; Johanna Frick; Dominique Thierry; Alain Chapel

Patients who undergo pelvic or abdominal radiotherapy may develop side effects that can be life threatening. Tissue complications caused by radiation-induced stem cell depletion may result in structural and functional alterations of the gastrointestinal (GI) tract. Stem cell therapy using mesenchymal stem cells (MSC) is a promising approach for replenishment of the depleted stem cell compartment during radiotherapy. There is little information on the therapeutic potential of MSC in injured-GI tract following radiation exposure. In this study, we addressed the ability of MSC to support the structural regeneration of the small intestine after abdominal irradiation. We isolated MSC from human bone marrow and human mesenchymal stem cells (hMSC) were transplanted into immunotolerent NOD/SCID mice with a dose of 5.10(6) cells via the systemic route. Using a model of radiation-induced intestinal injury, we studied the link between damage, hMSC engraftment and the capacity of hMSC to sustain structural recovery. Tissue injury was assessed by histological analysis. hMSC engraftment in tissues was quantified by PCR assay. Following abdominal irradiation, the histological analysis of small intestinal structure confirms the presence of partial and transient (three days) mucosal atrophy. PCR analysis evidences a low but significant hMSC implantation in small intestine (0.17%) but also at all the sites of local irradiation (kidney, stomach and spleen). Finally, in presence of hMSC, the small intestinal structure is already recovered at three days after abdominal radiation exposure. We show a structural recovery accompanied by an increase of small intestinal villus height, three and fifteen days following abdominal radiation exposure. In this study, we show that radiation-induced small intestinal injury may play a role in the recruitment of MSC for the improvement of tissue recovery. This work supports, the use of MSC infusion to repair damaged GI tract in patients subjected to radiotherapy. MSC therapy to avoid extended intestinal crypt sterilization is a promising approach to diminish healthy tissue alterations during the course of pelvic radiotherapy.


Clinical Reviews in Allergy & Immunology | 2013

Use of Mesenchymal Stem Cells (MSC) in Chronic Inflammatory Fistulizing and Fibrotic Diseases: a Comprehensive Review

Jan Voswinkel; Sabine Francois; Jean-Marc Simon; Marc Benderitter; Norbert-Claude Gorin; Mohamad Mohty; Loic Fouillard; Alain Chapel

Mesenchymal stem cells (MSC), multipotent adult stem cells, feature the potential to regenerate tissue damage and, in parallel, inhibit inflammation and fibrosis. MSC can be safely transplanted in autologous and allogeneic ways as they are non-immunogenic, and consequently represent a therapeutic option for refractory connective tissue diseases, fibrosing diseases like scleroderma and fistulizing colitis like in Crohn’s disease. Actually, there are more than 200 registered clinical trial sites for evaluating MSC therapy, and 22 are on autoimmune diseases. In irradiation-induced colitis, MSC accelerate functional recovery of the intestine and dampen the systemic inflammatory response. In order to provide rescue therapy for accidentally over-irradiated prostate cancer patients who underwent radiotherapy, allogeneic bone marrow-derived MSC from family donors were intravenously infused to three patients with refractory and fistulizing colitis resembling fistulizing Crohn’s disease. Systemic MSC therapy of refractory irradiation-induced colitis was safe and effective on pain, diarrhoea, hemorrhage, inflammation and fistulization accompanied by modulation of the lymphocyte subsets towards an increase of T regulatory cells and a decrease of activated effector T cells. The current data indicate that MSC represent a promising alternative strategy in the treatment of various immune-mediated diseases. Encouraging results have already been obtained from clinical trials in Crohn’s disease and SLE as well as from case series in systemic sclerosis. MSC represent a safe therapeutic measure for patients who suffer from chronic and fistulizing colitis. These findings are instructional for the management of refractory inflammatory bowel diseases that are characterized by similar clinical and immunopathological features.


Haematologica | 2012

Human induced pluripotent stem cells can reach complete terminal maturation: in vivo and in vitro evidence in the erythropoietic differentiation model

Ladan Kobari; Frank Yates; Noufissa Oudrhiri; Alain Francina; Laurent Kiger; Christelle Mazurier; Wassim El-Nemer; Nicolas Hebert; Marie-Catherine Giarratana; Sabine Francois; Alain Chapel; Hélène Lapillonne; Dominique Luton; Annelise Bennaceur-Griscelli; Luc Douay

Background Human induced pluripotent stem cells offer perspectives for cell therapy and research models for diseases. We applied this approach to the normal and pathological erythroid differentiation model by establishing induced pluripotent stem cells from normal and homozygous sickle cell disease donors. Design and Methods We addressed the question as to whether these cells can reach complete erythroid terminal maturation notably with a complete switch from fetal to adult hemoglobin. Sickle cell disease induced pluripotent stem cells were differentiated in vitro into red blood cells and characterized for their terminal maturation in terms of hemoglobin content, oxygen transport capacity, deformability, sickling and adherence. Nucleated erythroblast populations generated from normal and pathological induced pluripotent stem cells were then injected into non-obese diabetic severe combined immunodeficiency mice to follow the in vivo hemoglobin maturation. Results We observed that in vitro erythroid differentiation results in predominance of fetal hemoglobin which rescues the functionality of red blood cells in the pathological model of sickle cell disease. We observed, in vivo, the switch from fetal to adult hemoglobin after infusion of nucleated erythroid precursors derived from either normal or pathological induced pluripotent stem cells into mice. Conclusions These results demonstrate that human induced pluripotent stem cells: i) can achieve complete terminal erythroid maturation, in vitro in terms of nucleus expulsion and in vivo in terms of hemoglobin maturation; and ii) open the way to generation of functionally corrected red blood cells from sickle cell disease induced pluripotent stem cells, without any genetic modification or drug treatment.


BioMed Research International | 2013

Human Mesenchymal Stem Cells Provide Protection against Radiation-Induced Liver Injury by Antioxidative Process, Vasculature Protection, Hepatocyte Differentiation, and Trophic Effects

Sabine Francois; Moubarak Mouiseddine; Bénédicte Allenet-Lepage; Jan Voswinkel; Luc Douay; Marc Benderitter; Alain Chapel

To evaluate the potential therapeutic effect of the infusion of hMSCs for the correction of liver injuries, we performed total body radiation exposure of NOD/SCID mice. After irradiation, mir-27b level decreases in liver, increasing the directional migration of hMSCs by upregulating SDF1α. A significant increase in plasmatic transaminases levels, apoptosis process in the liver vascular system, and in oxidative stress were observed. hMSC injection induced a decrease in transaminases levels and oxidative stress, a disappearance of apoptotic cells, and an increase in Nrf2, SOD gene expression, which might reduce ROS production in the injured liver. Engrafted hMSCs expressed cytokeratin CK18 and CK19 and AFP genes indicating possible hepatocyte differentiation. The presence of hMSCs expressing VEGF and Ang-1 in the perivascular region, associated with an increased expression of VEGFr1, r2 in the liver, can confer a role of secreting cells to hMSCs in order to maintain the endothelial function. To explain the benefits to the liver of hMSC engraftment, we find that hMSCs secreted NGF, HGF, and anti-inflammatory molecules IL-10, IL1-RA contributing to prevention of apoptosis, increasing cell proliferation in the liver which might correct liver dysfunction. MSCs are potent candidates to repair and protect healthy tissues against radiation damages.


Immunologic Research | 2013

Gastro-intestinal autoimmunity: preclinical experiences and successful therapy of fistulizing bowel diseases and gut Graft versus host disease by mesenchymal stromal cells.

Jan Voswinkel; Sabine Francois; Norbert-Claude Gorin; Alain Chapel

Mesenchymal stromal cells (MSC) are multipotent adult stem cells with the potential to regenerate tissue damage and inhibit inflammation and fibrosis in parallel. As they are non-immunogenic, MSC can be safely auto- and allotransplanted and consequently represent a therapeutic option for refractory connective tissue diseases and fistulizing colitis like Crohn’s disease. Actually, there are more than 200 registered clinical trial sites for evaluating MSC therapy, 22 are on autoimmune diseases and 27 are actually recruiting bowel disease’ patients. More than 1,500 patients with bowel diseases like Crohn’s disease were treated in clinical trials by local as well as systemic MSC therapy. Phase I and II trials on fistula documented the feasibility and safety of MSC therapy, and a significant superiority compared to fibrin glue in fistulizing bowel diseases was demonstrated. Autologous as well as allogeneic use of Bone marrow as well as of adipose tissue-derived MSC are feasible. In refractory Graft versus host disease, especially in refractory gut Graft versus host diseases, encouraging results were reported using MSC. Systemic MSC therapy of refractory irradiation-induced colitis was safe and effective on pain, diarrhea, hemorrhage, inflammation and fistulization accompanied by modulation of the lymphocyte subsets toward an increase in T regulatory cells and a decrease in activated effector T cells. Mesenchymal stem cells represent a safe therapy for patients with refractory inflammatory bowel diseases.


Methods of Molecular Biology | 2012

Intravenous human mesenchymal stem cells transplantation in NOD/SCID mice preserve liver integrity of irradiation damage.

Moubarak Mouiseddine; Sabine Francois; Maâmar Souidi; Alain Chapel

This work was initiated in an effort to evaluate the potential therapeutic contribution of the infusion of mesenchymal stem cells (MSC) for the correction of liver injuries. We subjected NOD-SCID mice to a 10.5-Gy abdominal irradiation and we tested the biological and histological markers of liver injury in the absence and after infusion of expanded human MSC. Irradiation alone induced a significant elevation of the ALT and AST. Apoptosis in the endothelial layer of vessels was observed. When MSC were infused in mice, a significant decrease of transaminases was measured, and a total disappearance of apoptotic cells. MSC were not found in liver. To explain the protection of liver without MSC engraftment, we hypothesize an indirect action of MSC on the liver via the intestinal tract. Pelvic or total body irradiation induces intestinal absorption defects leading to an alteration of the enterohepatic recirculation of bile acids. This alteration induces an increase in Deoxy Cholic Acid (DCA) which is hepatoxic. In this study, we confirm these results. DCA concentration increased approximately twofold after irradiation but stayed to the baseline level after MSC injection. We propose from our observations that, following irradiation, MSC infusion indirectly corrected liver dysfunction by preventing gut damage. This explanation would be consistent with the absence of MSC engraftment in liver. These results evidenced that MSC treatment of a target organ may have an effect on distant tissues. This observation comes in support to the interest for the use of MSC for cellular therapy in multiple pathologies proposed in the recent years.


World Journal of Stem Cells | 2013

New insights for pelvic radiation disease treatment: Multipotent stromal cell is a promise mainstay treatment for the restoration of abdominopelvic severe chronic damages induced by radiotherapy

Alain Chapel; Sabine Francois; Luc Douay; Marc Benderitter; Jan Voswinkel

Radiotherapy may induce irreversible damage on healthy tissues surrounding the tumor. It has been reported that the majority of patients receiving pelvic radiation therapy show early or late tissue reactions of graded severity as radiotherapy affects not only the targeted tumor cells but also the surrounding healthy tissues. The late adverse effects of pelvic radiotherapy concern 5% to 10% of them, which could be life threatening. However, a clear medical consensus concerning the clinical management of such healthy tissue sequelae does not exist. Although no pharmacologic interventions have yet been proven to efficiently mitigate radiotherapy severe side effects, few preclinical researches show the potential of combined and sequential pharmacological treatments to prevent the onset of tissue damage. Our group has demonstrated in preclinical animal models that systemic mesenchymal stromal cell (MSC) injection is a promising approach for the medical management of gastrointestinal disorder after irradiation. We have shown that MSCs migrate to damaged tissues and restore gut functions after irradiation. We carefully studied side effects of stem cell injection for further application in patients. We have shown that clinical status of four patients suffering from severe pelvic side effects resulting from an over-dosage was improved following MSC injection in a compationnal situation.


Current Pharmaceutical Biotechnology | 2014

Innovative cell therapy in the treatment of serious adverse events related to both chemo-radiotherapy protocol and acute myeloid leukemia syndrome: the infusion of mesenchymal stem cells post-treatment reduces hematopoietic toxicity and promotes hematopoietic reconstitution.

Loic Fouillard; Sabine Francois; Sandrine Bouchet; Morad Bensidhoum; Abdelatif Elm’selmi; Alain Chapel

Bone marrow stroma is damaged by chemotherapy and irradiation protocol. Bone marrow microenvironment supports haematopoiesis and comprises Mesenchymal Stem Cells (MSCs). Coinfusion of MSCs with hematopoietic stem cells (HSC) improves engraftment and accelerates haematopoietic recovery. Stroma-derived factor-1 (SDF-1) is a chemotactic factor which plays a crucial role in stem cell transplantation by enhancing the ability of HSC to engraft. In this study expression of SDF-1 in bone marrow MSCs and the level of Colony Forming Unit Fibroblast (CFU-F) were evaluated in 8 patients with Acute Myeloid leukemia (AML). Evaluation was done at diagnosis and after induction/consolidation chemotherapy before the onset of haematopoietic stem cell transplantation (HSCT). CFU-F frequency increases from diagnosis to remission. Nevertheless level of stromal derived factor-1 (SDF-1) transcripts in bone marrow MSCs of patients with AML stays low. Considering the role of SDF-1 in the homing of HSC, the consequences of SDF-1 deficiency observed in this study might be deleterious on the engraftment after HSCT and haematopoietic recovery. The whole result of this clinical study is an argument for MSC infusion to restore a normal level of SDF1 in the bone marrow microenvironment that could reduce hematopoietic toxicity of chemotherapy and improve HSC engraftment after HSCT.


Genetic Vaccines and Therapy | 2004

In vivo gene targeting of IL-3 into immature hematopoietic cells through CD117 receptor mediated antibody gene delivery.

Alain Chapel; Olivier Deas; Morad Bensidhoum; Sabine Francois; Moubarak Mouiseddine; Pascal Poncet; Antoine Durrbach; Jocelyne Aigueperse; Patrick Gourmelon; Norbert Claude Gorin; François Hirsch; Dominique Thierry

BackgroundTargeted gene transfection remains a crucial issue to permit the real development of genetic therapy. As such, in vivo targeted transfection of specific subsets of hematopoietic stem cells might help to sustain hematopoietic recovery from bone marrow aplasia by providing local production of growth factors.MethodsBalb/C mice were injected intravenously, with an anti-mouse c-kit (CD117) monoclonal antibody chemically coupled to a human IL-3 gene-containing plasmid DNA. Mice were sacrificed for tissue analyses at various days after injection of the conjugates.ResultsBy ELISA, the production of human IL-3 was evidenced in the sera of animals 5 days after treatment. Cytofluorometric analysis after in vivo transfection of a reporter gene eGFP demonstrated transfection of CD117+/Sca1+ hematopoietic immature cells. By PCR analysis of genomic DNA and RNA using primer specific pIL3 sequences, presence and expression of the human IL-3-transgene were detected in the bone marrow up to 10 days in transfected mice but not in control animals.ConclusionsThese data clearly indicate that antibody-mediated endocytosis gene transfer allows the expression of the IL-3 transgene into hematopoietic immature cells, in vivo. While availability of marketed recombinant growth factors is restricted, this targeting strategy should permit delivery of therapeutic genes to tissues of interest through systemic delivery. In particular, the ability to specifically target growth factor expression into repopulating hematopoietic stem cells may create new opportunities for the treatment of primary or radiation-induced marrow failures.

Collaboration


Dive into the Sabine Francois's collaboration.

Top Co-Authors

Avatar

Alain Chapel

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Dominique Thierry

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Moubarak Mouiseddine

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Marc Benderitter

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Patrick Gourmelon

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Alexandra Sémont

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Amandine Saché

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johanna Frick

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Noëlle Mathieu

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Researchain Logo
Decentralizing Knowledge