Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sabine M. Hölter is active.

Publication


Featured researches published by Sabine M. Hölter.


Cell | 2009

A Humanized Version of Foxp2 Affects Cortico-Basal Ganglia Circuits in Mice

Wolfgang Enard; Sabine Gehre; Kurt Hammerschmidt; Sabine M. Hölter; Torsten Blass; Martina K. Brückner; Christiane Schreiweis; Christine Winter; Reinhard Sohr; Lore Becker; Victor Wiebe; Birgit Nickel; Thomas Giger; Uwe Müller; Matthias Groszer; Thure Adler; Antonio Aguilar; Ines Bolle; Julia Calzada-Wack; Claudia Dalke; Nicole Ehrhardt; Jack Favor; Helmut Fuchs; Valérie Gailus-Durner; Wolfgang Hans; Gabriele Hölzlwimmer; Anahita Javaheri; Svetoslav Kalaydjiev; Magdalena Kallnik; Eva Kling

It has been proposed that two amino acid substitutions in the transcription factor FOXP2 have been positively selected during human evolution due to effects on aspects of speech and language. Here, we introduce these substitutions into the endogenous Foxp2 gene of mice. Although these mice are generally healthy, they have qualitatively different ultrasonic vocalizations, decreased exploratory behavior and decreased dopamine concentrations in the brain suggesting that the humanized Foxp2 allele affects basal ganglia. In the striatum, a part of the basal ganglia affected in humans with a speech deficit due to a nonfunctional FOXP2 allele, we find that medium spiny neurons have increased dendrite lengths and increased synaptic plasticity. Since mice carrying one nonfunctional Foxp2 allele show opposite effects, this suggests that alterations in cortico-basal ganglia circuits might have been important for the evolution of speech and language in humans.


European Journal of Pharmacology | 1996

Acamprosate and alcohol: I. Effects on alcohol intake following alcohol deprivation in the rat

Rainer Spanagel; Sabine M. Hölter; Karl Allingham; Rainer Landgraf; Walter Zieglgänsberger

Acamprosate (calcium-acetyl homotaurinate) is a new compound in the treatment of alcoholism. Its efficacy has been proven in several clinical trials and registration is now pending in most European countries. The basic mechanisms by which acamprosate elicits its anti-craving action, thereby leading to reduced relapse rates, is not known at the moment. In the present study we describe a rat model of long-term alcohol-drinking which mimics relapse behavior in human alcoholics. The effect of acamprosate was studied in this model. Wistar rats had a free choice between water and alcohol solutions of different concentrations (5, 10, 20% v/v). After two months of continuous alcohol access, rats were deprived of alcohol for three days. Following this deprivation phase, all alcohol solutions were presented again. This procedure was repeated monthly for the following six months. The rats consumed 3.5 +/- 0.3 g/kg alcohol a day. After alcohol deprivation, alcohol intake rose to 5.2 +/- 0.3 g/kg per day resulting in blood alcohol levels of 30 +/- 6 mg/dl. Interestingly, the addition of quinine to the alcohol solutions or the additional presentation of a 5% sucrose solution did not affect the alcohol-deprivation effect after eight months of this intermittent alcohol exposure. However, when acamprosate (50-200 mg/kg i.p.) was administered twice daily, alcohol-drinking following an alcohol-deprivation phase was decreased dose dependently. Given at the highest dose alcohol intake even dropped significantly below baseline drinking. Together, these results show that acamprosate effectively diminishes the alcohol-deprivation effect. Furthermore, the described model seems to be a suitable animal model to screen compounds for their anti-relapse properties and subsequently for their anti-craving action.


Journal of Clinical Investigation | 2013

Rapamycin extends murine lifespan but has limited effects on aging.

Frauke Neff; Diana Flores-Dominguez; Devon P. Ryan; Marion Horsch; Susanne Schröder; Thure Adler; Luciana Caminha Afonso; Juan Antonio Aguilar-Pimentel; Lore Becker; Lillian Garrett; Wolfgang Hans; Moritz M. Hettich; Richard Holtmeier; Sabine M. Hölter; Kristin Moreth; Cornelia Prehn; Oliver Puk; Ildiko Racz; Birgit Rathkolb; Jan Rozman; Beatrix Naton; Rainer Ordemann; Jerzy Adamski; Johannes Beckers; Raffi Bekeredjian; Dirk H. Busch; Gerhard Ehninger; Jochen Graw; Heinz Höfler; Martin Klingenspor

Aging is a major risk factor for a large number of disorders and functional impairments. Therapeutic targeting of the aging process may therefore represent an innovative strategy in the quest for novel and broadly effective treatments against age-related diseases. The recent report of lifespan extension in mice treated with the FDA-approved mTOR inhibitor rapamycin represented the first demonstration of pharmacological extension of maximal lifespan in mammals. Longevity effects of rapamycin may, however, be due to rapamycins effects on specific life-limiting pathologies, such as cancers, and it remains unclear if this compound actually slows the rate of aging in mammals. Here, we present results from a comprehensive, large-scale assessment of a wide range of structural and functional aging phenotypes, which we performed to determine whether rapamycin slows the rate of aging in male C57BL/6J mice. While rapamycin did extend lifespan, it ameliorated few studied aging phenotypes. A subset of aging traits appeared to be rescued by rapamycin. Rapamycin, however, had similar effects on many of these traits in young animals, indicating that these effects were not due to a modulation of aging, but rather related to aging-independent drug effects. Therefore, our data largely dissociate rapamycins longevity effects from effects on aging itself.


Genome Biology | 2013

A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains

Michelle Simon; Simon Greenaway; Jacqueline K. White; Helmut Fuchs; Valérie Gailus-Durner; Sara Wells; Tania Sorg; Kim Wong; Elodie Bedu; Elizabeth J. Cartwright; Romain Dacquin; Sophia Djebali; Jeanne Estabel; Jochen Graw; Neil Ingham; Ian J. Jackson; Andreas Lengeling; Silvia Mandillo; Jacqueline Marvel; Hamid Meziane; Frédéric Preitner; Oliver Puk; Michel J. Roux; David J. Adams; Sarah Atkins; Abdel Ayadi; Lore Becker; Andrew Blake; Debra Brooker; Heather Cater

BackgroundThe mouse inbred line C57BL/6J is widely used in mouse genetics and its genome has been incorporated into many genetic reference populations. More recently large initiatives such as the International Knockout Mouse Consortium (IKMC) are using the C57BL/6N mouse strain to generate null alleles for all mouse genes. Hence both strains are now widely used in mouse genetics studies. Here we perform a comprehensive genomic and phenotypic analysis of the two strains to identify differences that may influence their underlying genetic mechanisms.ResultsWe undertake genome sequence comparisons of C57BL/6J and C57BL/6N to identify SNPs, indels and structural variants, with a focus on identifying all coding variants. We annotate 34 SNPs and 2 indels that distinguish C57BL/6J and C57BL/6N coding sequences, as well as 15 structural variants that overlap a gene. In parallel we assess the comparative phenotypes of the two inbred lines utilizing the EMPReSSslim phenotyping pipeline, a broad based assessment encompassing diverse biological systems. We perform additional secondary phenotyping assessments to explore other phenotype domains and to elaborate phenotype differences identified in the primary assessment. We uncover significant phenotypic differences between the two lines, replicated across multiple centers, in a number of physiological, biochemical and behavioral systems.ConclusionsComparison of C57BL/6J and C57BL/6N demonstrates a range of phenotypic differences that have the potential to impact upon penetrance and expressivity of mutational effects in these strains. Moreover, the sequence variants we identify provide a set of candidate genes for the phenotypic differences observed between the two strains.


Physiological Genomics | 2008

Reliability, robustness, and reproducibility in mouse behavioral phenotyping: a cross-laboratory study.

Silvia Mandillo; Valter Tucci; Sabine M. Hölter; Hamid Meziane; Mumna Al Banchaabouchi; Magdalena Kallnik; Heena V. Lad; Patrick M. Nolan; Abdel-Mouttalib Ouagazzal; Emma L. Coghill; Karin Gale; Elisabetta Golini; Sylvie Jacquot; Wojtek Krezel; Andy Parker; Fabrice Riet; Ilka Schneider; Daniela Marazziti; Johan Auwerx; Steve D.M. Brown; Pierre Chambon; Nadia Rosenthal; Glauco P. Tocchini-Valentini; Wolfgang Wurst

Establishing standard operating procedures (SOPs) as tools for the analysis of behavioral phenotypes is fundamental to mouse functional genomics. It is essential that the tests designed provide reliable measures of the process under investigation but most importantly that these are reproducible across both time and laboratories. For this reason, we devised and tested a set of SOPs to investigate mouse behavior. Five research centers were involved across France, Germany, Italy, and the UK in this study, as part of the EUMORPHIA program. All the procedures underwent a cross-validation experimental study to investigate the robustness of the designed protocols. Four inbred reference strains (C57BL/6J, C3HeB/FeJ, BALB/cByJ, 129S2/SvPas), reflecting their use as common background strains in mutagenesis programs, were analyzed to validate these tests. We demonstrate that the operating procedures employed, which includes open field, SHIRPA, grip-strength, rotarod, Y-maze, prepulse inhibition of acoustic startle response, and tail flick tests, generated reproducible results between laboratories for a number of the test output parameters. However, we also identified several uncontrolled variables that constitute confounding factors in behavioral phenotyping. The EUMORPHIA SOPs described here are an important start-point for the ongoing development of increasingly robust phenotyping platforms and their application in large-scale, multicentre mouse phenotyping programs.


The Journal of Neuroscience | 2009

Neuronal 3′,3,5-Triiodothyronine (T3) Uptake and Behavioral Phenotype of Mice Deficient in Mct8, the Neuronal T3 Transporter Mutated in Allan–Herndon–Dudley Syndrome

Eva K. Wirth; Stephan Roth; Cristiane Blechschmidt; Sabine M. Hölter; Lore Becker; Ildiko Racz; Andreas Zimmer; Thomas Klopstock; Valérie Gailus-Durner; Helmut Fuchs; Wolfgang Wurst; Thomas Naumann; Anja U. Bräuer; Martin Hrabé de Angelis; Josef Köhrle; Annette Grüters; Ulrich Schweizer

Thyroid hormone transport into cells requires plasma membrane transport proteins. Mutations in one of these, monocarboxylate transporter 8 (MCT8), have been identified as underlying cause for the Allan–Herndon–Dudley syndrome, an X-linked mental retardation in which the patients also present with abnormally high 3′,3,5-triiodothyronine (T3) plasma levels. Mice deficient in Mct8 replicate the thyroid hormone abnormalities observed in the human condition. However, no neurological deficits have been described in mice lacking Mct8. Therefore, we subjected Mct8-deficient mice to a comprehensive immunohistochemical, neurological, and behavioral screen. Several behavioral abnormalities were found in the mutants. Interestingly, some of these behavioral changes are compatible with hypothyroidism, whereas others rather indicate hyperthyroidism. We thus hypothesized that neurons exclusively dependent on Mct8 are in a hypothyroid state, whereas neurons expressing other T3 transporters become hyperthyroid, if they are exposed directly to the high plasma T3. The majority of T3 uptake in primary cortical neurons is mediated by Mct8, but pharmacological inhibition suggested functional expression of additional T3 transporter classes. mRNAs encoding six T3 transporters, including L-type amino acid transporters (LATs), were coexpressed with Mct8 in isolated neurons. We then demonstrated Lat2 expression in cultured neurons and throughout murine brain development. In contrast, LAT2 is expressed in microglia in the developing human brain during gestation, but not in neurons. We suggest that lack of functional complementation by alternative thyroid hormone transporters in developing human neurons precipitates the devastating neurodevelopmental phenotype in MCT8-deficient patients, whereas Mct8-deficient mouse neurons are functionally complemented by other transporters, for possibly Lat2.


Behavioural Brain Research | 2000

Unconditioned anxiety and social behaviour in two rat lines selectively bred for high and low anxiety-related behaviour.

Markus S.H. Henniger; Frauke Ohl; Sabine M. Hölter; Petra Weißenbacher; Nicola Toschi; Patrick Lörscher; Alexandra Wigger; Rainer Spanagel; Rainer Landgraf

Individuals of high anxiety-related behaviour (HAB) and low anxiety-related behaviour (LAB) rat lines were selectively bred for differences in anxiety-related behaviour on the elevated plus-maze. The goal of this study was to investigate whether this behavioural difference is restricted to the test used as the selection criterion or whether it is a stable and robust trait also in other conflict or non-conflict situations. Therefore, behaviour of male and female HAB and LAB rats was examined in two further tests of unconditioned anxiety: the black-white box and the social interaction test. Furthermore, behaviour of group-housed male HAB and LAB rats was studied in their home cages. In addition to standard statistics, discriminant analyses were performed. The difference in anxiety-related behaviour between the two lines was highly consistent in all tests of unconditioned anxiety. There were also differences in home cage behaviour, LAB rats being more active than HAB rats; this is likely to be a consequence of the LAB rats displaying a higher aggressiveness in social behaviour, compared to HAB rats. In all tests used HAB and LAB rats were clearly distinguished by discriminant analysis. However, while in the elevated plus-maze and the black-white box test the most important parameters for discrimination between the two lines were mainly those generally seen as closely related to anxiety, the discrimination in the social interaction paradigm was primarily due to differences in locomotor activity.


The EMBO Journal | 2014

Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders

Sandra Blanco; Sabine Dietmann; Joana V. Flores; Shobbir Hussain; Claudia Kutter; Peter Humphreys; Margus Lukk; Patrick Lombard; Lucas Treps; Martyna Popis; Stefanie Kellner; Sabine M. Hölter; Lillian Garrett; Wolfgang Wurst; Lore Becker; Thomas Klopstock; Helmut Fuchs; Valérie Gailus-Durner; Martin Hrabĕ de Angelis; Ragnhildur Káradóttir; Mark Helm; Jernej Ule; Joseph G. Gleeson; Duncan T. Odom; Michaela Frye

Mutations in the cytosine‐5 RNA methyltransferase NSun2 cause microcephaly and other neurological abnormalities in mice and human. How post‐transcriptional methylation contributes to the human disease is currently unknown. By comparing gene expression data with global cytosine‐5 RNA methylomes in patient fibroblasts and NSun2‐deficient mice, we find that loss of cytosine‐5 RNA methylation increases the angiogenin‐mediated endonucleolytic cleavage of transfer RNAs (tRNA) leading to an accumulation of 5′ tRNA‐derived small RNA fragments. Accumulation of 5′ tRNA fragments in the absence of NSun2 reduces protein translation rates and activates stress pathways leading to reduced cell size and increased apoptosis of cortical, hippocampal and striatal neurons. Mechanistically, we demonstrate that angiogenin binds with higher affinity to tRNAs lacking site‐specific NSun2‐mediated methylation and that the presence of 5′ tRNA fragments is sufficient and required to trigger cellular stress responses. Furthermore, the enhanced sensitivity of NSun2‐deficient brains to oxidative stress can be rescued through inhibition of angiogenin during embryogenesis. In conclusion, failure in NSun2‐mediated tRNA methylation contributes to human diseases via stress‐induced RNA cleavage.


Journal of Neural Transmission | 2000

Pharmacological validation of a new animal model of alcoholism

Rainer Spanagel; Sabine M. Hölter

Summary. A new animal model of alcoholism has been developed. Rats derived from this model show certain characteristics: (i) they have an incentive demand to consume alcohol, (ii) they exhibit relapse-like drinking even after a very long time of abstinence, (iii) they show tolerance to alcohol and have mild signs of physical withdrawal during the onset of abstinence, and (iv) during abstinence they also exhibit a psychological withdrawal syndrome consisting of enhanced anxiety-related behaviour and hyperreactivity to stressful situations.Anti-craving drugs such as acamprosate and naltrexone which proved to be effective in human alcoholics to prevent relapse were also effective in our animal model. Thus, both compounds suppressed the alcohol deprivation effect which is used as a measure for craving and relapse. It is concluded that this pharmacological validation of our model demonstrates the predictive value of our model and enables us to further characterize putative anti-craving drugs and neurobiological mechanisms of addictive behaviour.


Psychopharmacology | 1999

Effects of opiate antagonist treatment on the alcohol deprivation effect in long-term ethanol-experienced rats

Sabine M. Hölter; Rainer Spanagel

Abstract Rationale: Opiate antagonists are promising pharmacotherapeutic agents for the treatment of alcohol dependence, reducing craving and relapse rates in weaned alcoholics. However, preclinical findings indicate that they can also increase ethanol consumption and preference in animals with a strong liking for ethanol, depending on the dose and treatment regimen. Objective: The present study examined the effects of chronic, intermittent and acute opiate antagonist treatment on the alcohol deprivation effect (ADE) in long-term ethanol- experienced rats, which is an animal model of craving and relapse. Methods: Long-term ethanol-experienced rats were either implanted with mini-osmotic pumps delivering 0, 0.5 or 1 mg/kg per hour naloxone (chronic treatment) or received intermittent naltrexone injections (2×5 mg/kg per day SC). Effects of chronic and intermittent treatment on the ADE were studied in a four-bottle home cage drinking paradigm. In a second experiment, long-term ethanol-experienced rats trained in an operant ethanol self-administration paradigm received acute naltrexone treatment (0, 0.1, 1 or 10 mg/kg SC) before a 23-h session either during basal drinking or during the ADE. Results: Chronic naloxone treatment increased ethanol preference during the ADE. Intermittent naltrexone treatment at a dose comparable to the lower dose of chronic treatment moderately attenuated the ADE. Acute naltrexone treatment selectively reduced lever pressing for ethanol both during the ADE and during basal drinking only at the lowest dose, whereas higher doses also suppressed water intake. The ethanol-specific suppressant effect on the ADE was long lasting. Concerning basal drinking, however, naltrexone had a long lasting reductive effect only on lever pressing for water. Conclusions: A low dose of naltrexone and an intermittent treatment regimen seem to be necessary to maintain a specific reduction in ethanol intake in individuals with a high motivation to consume ethanol. These findings are consistent with the notion that, at low doses, opiate antagonists reduce the reward value of reinforcers.

Collaboration


Dive into the Sabine M. Hölter's collaboration.

Top Co-Authors

Avatar

Wolfgang Wurst

University of California

View shared research outputs
Top Co-Authors

Avatar

Helmut Fuchs

Technische Universität München

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristin Moreth

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge