Sabine Pokutta
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sabine Pokutta.
Cell | 2005
Soichiro Yamada; Sabine Pokutta; Frauke Drees; William I. Weis; W. James Nelson
Spatial and functional organization of cells in tissues is determined by cell-cell adhesion, thought to be initiated through trans-interactions between extracellular domains of the cadherin family of adhesion proteins, and strengthened by linkage to the actin cytoskeleton. Prevailing dogma is that cadherins are linked to the actin cytoskeleton through beta-catenin and alpha-catenin, although the quaternary complex has never been demonstrated. We test this hypothesis and find that alpha-catenin does not interact with actin filaments and the E-cadherin-beta-catenin complex simultaneously, even in the presence of the actin binding proteins vinculin and alpha-actinin, either in solution or on isolated cadherin-containing membranes. Direct analysis in polarized cells shows that mobilities of E-cadherin, beta-catenin, and alpha-catenin are similar, regardless of the dynamic state of actin assembly, whereas actin and several actin binding proteins have higher mobilities. These results suggest that the linkage between the cadherin-catenin complex and actin filaments is more dynamic than previously appreciated.
Cell | 2005
Frauke Drees; Sabine Pokutta; Soichiro Yamada; W. James Nelson; William I. Weis
Epithelial cell-cell junctions, organized by adhesion proteins and the underlying actin cytoskeleton, are considered to be stable structures maintaining the structural integrity of tissues. Contrary to the idea that α-catenin links the adhesion protein E-cadherin through β-catenin to the actin cytoskeleton, in the accompanying paper we report that α-catenin does not bind simultaneously to both E-cadherin-β-catenin and actin filaments. Here we demonstrate that α-catenin exists as a monomer or a homodimer with different binding properties. Monomeric α-catenin binds more strongly to E-cadherin-β-catenin, whereas the dimer preferentially binds actin filaments. Different molecular conformations are associated with these different binding states, indicating that α-catenin is an allosteric protein. Significantly, α-catenin directly regulates actin-filament organization by suppressing Arp2/3-mediated actin polymerization, likely by competing with the Arp2/3 complex for binding to actin filaments. These results indicate a new role for α-catenin in local regulation of actin assembly and organization at sites of cadherin-mediated cell-cell adhesion.
Molecular Cell | 2000
Sabine Pokutta; William I. Weis
In adherens junctions, alpha-catenin links the cadherin-beta-catenin complex to the actin-based cytoskeleton. alpha-catenin is a homodimer in solution, but forms a 1:1 heterodimer with beta-catenin. The crystal structure of the alpha-catenin dimerization domain, residues 82-279, shows that alpha-catenin dimerizes through formation of a four-helix bundle in which two antiparallel helices are contributed by each protomer. A slightly larger fragment, comprising residues 57-264, binds to beta-catenin. A chimera consisting of the alpha-catenin-binding region of beta-catenin linked to the amino terminus of alpha-catenin 57-264 behaves as a monomer in solution, as expected, since beta-catenin binding disrupts the alpha-catenin dimer. The crystal structure of this chimera reveals the interaction between alpha- and beta-catenin, and provides a basis for understanding adherens junction assembly.
Journal of Cell Biology | 2010
Jacqueline M. Benjamin; Adam V. Kwiatkowski; Changsong Yang; Farida Korobova; Sabine Pokutta; Tatyana Svitkina; William I. Weis; W. James Nelson
αE-catenin has cell–cell contact–dependent and –independent functions in regulating actin and membrane dynamics.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Hee Jung Choi; Sabine Pokutta; Gregory W. Cadwell; Andrey A. Bobkov; Laurie A. Bankston; Robert C. Liddington; William I. Weis
αE-catenin, an essential component of the adherens junction, interacts with the classical cadherin–β-catenin complex and with F-actin, but its precise role is unknown. αE-catenin also binds to the F-actin-binding protein vinculin, which also appears to be important in junction assembly. Vinculin and αE-catenin are homologs that contain a series of helical bundle domains, D1–D5. We mapped the vinculin-binding site to a sequence in D3a comprising the central two helices of a four-helix bundle. The crystal structure of this peptide motif bound to vinculin D1 shows that the two helices adopt a parallel, colinear arrangement suggesting that the αE-catenin D3a bundle must unfold in order to bind vinculin. We show that αE-catenin D3 binds strongly to vinculin, whereas larger fragments and full-length αE-catenin bind approximately 1,000-fold more weakly. Thus, intramolecular interactions within αE-catenin inhibit binding to vinculin. The actin-binding activity of vinculin is inhibited by an intramolecular interaction between the head (D1–D4) and the actin-binding D5 tail. In the absence of F-actin, there is no detectable binding of αE-catenin D3 to full-length vinculin; however, αE-catenin D3 promotes binding of vinculin to F-actin whereas full-length αE-catenin does not. These findings support the combinatorial or “coincidence” model of activation in which binding of high-affinity proteins to the vinculin head and tail is required to shift the conformational equilibrium of vinculin from a closed, autoinhibited state to an open, stable F-actin-binding state. The data also imply that αE-catenin must be activated in order to bind to vinculin.
Current Opinion in Structural Biology | 2002
Sabine Pokutta; William I. Weis
The cytoplasmic face of cell contact sites comprises large macromolecular assemblies that link transmembrane cell adhesion molecules to the cytoskeleton. These assemblies are dynamic structures that are the targets of regulatory signals that control cell adhesiveness. Recent studies of the biochemistry and structure of the cadherin-catenin complex, vinculin and proteins of the ezrin/radixin/moesin family have begun to reveal the architecture of these assemblies and the mechanisms that are involved in their regulation.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Adam V. Kwiatkowski; Stephanie L. Maiden; Sabine Pokutta; Hee Jung Choi; Jacqueline M. Benjamin; Allison M. Lynch; W. James Nelson; William I. Weis; Jeff Hardin
The ternary complex of cadherin, β-catenin, and α-catenin regulates actin-dependent cell–cell adhesion. α-Catenin can bind β-catenin and F-actin, but in mammals α-catenin either binds β-catenin as a monomer or F-actin as a homodimer. It is not known if this conformational regulation of α-catenin is evolutionarily conserved. The Caenorhabditis elegans α-catenin homolog HMP-1 is essential for actin-dependent epidermal enclosure and embryo elongation. Here we show that HMP-1 is a monomer with a functional C-terminal F-actin binding domain. However, neither full-length HMP-1 nor a ternary complex of HMP-1–HMP-2(β-catenin)–HMR-1(cadherin) bind F-actin in vitro, suggesting that HMP-1 is auto-inhibited. Truncation of either the F-actin or HMP-2 binding domain of HMP-1 disrupts C. elegans development, indicating that HMP-1 must be able to bind F-actin and HMP-2 to function in vivo. Our study defines evolutionarily conserved properties of α-catenin and suggests that multiple mechanisms regulate α-catenin binding to F-actin.
Biochemical Society Transactions | 2008
Sabine Pokutta; Frauke Drees; Soichiro Yamada; W. James Nelson; William I. Weis
Cadherins are transmembrane adhesion molecules that mediate homotypic cell-cell contact. In adherens junctions, the cytoplasmic domain of cadherins is functionally linked to the actin cytoskeleton through a series of proteins known as catenins. E-cadherin binds to beta-catenin, which in turn binds to alpha-catenin to form a ternary complex. alpha-Catenin also binds to actin, and it was assumed previously that alpha-catenin links the cadherin-catenin complex to actin. However, biochemical, structural and live-cell imaging studies of the cadherin-catenin complex and its interaction with actin show that binding of beta-catenin to alpha-catenin prevents the latter from binding to actin. Biochemical and structural data indicate that alpha-catenin acts as an allosteric protein whose conformation and activity changes depending on whether or not it is bound to beta-catenin. Initial contacts between cells occur on dynamic lamellipodia formed by polymerization of branched actin networks, a process controlled by the Arp2/3 (actin-related protein 2/3) complex. alpha-Catenin can suppress the activity of Arp2/3 by competing for actin filaments. These findings lead to a model for adherens junction formation in which clustering of the cadherin-beta-catenin complex recruits high levels of alpha-catenin that can suppress the Arp2/3 complex, leading to cessation of lamellipodial movement and formation of a stable contact. Thus alpha-catenin appears to play a central role in cell-cell contact formation.
Journal of Biological Chemistry | 2009
Hee Jung Choi; Julia Christina Gross; Sabine Pokutta; William I. Weis
Plakoglobin and β-catenin are homologous armadillo repeat proteins found in adherens junctions, where they interact with the cytoplasmic domain of classical cadherins and with α-catenin. Plakoglobin, but normally not β-catenin, is also a structural constituent of desmosomes, where it binds to the cytoplasmic domains of the desmosomal cadherins, desmogleins and desmocollins. Here, we report structural, biophysical, and biochemical studies aimed at understanding the molecular basis of selective exclusion of β-catenin and α-catenin from desmosomes. The crystal structure of the plakoglobin armadillo domain bound to phosphorylated E-cadherin shows virtually identical interactions to those observed between β-catenin and E-cadherin. Trypsin sensitivity experiments indicate that the plakoglobin arm domain by itself is more flexible than that of β-catenin. Binding of plakoglobin and β-catenin to the intracellular regions of E-cadherin, desmoglein1, and desmocollin1 was measured by isothermal titration calorimetry. Plakoglobin and β-catenin bind strongly and with similar thermodynamic parameters to E-cadherin. In contrast, β-catenin binds to desmoglein-1 more weakly than does plakoglobin. β-Catenin and plakoglobin bind with similar weak affinities to desmocollin-1. Full affinity binding of desmoglein-1 requires sequences C-terminal to the region homologous to the catenin-binding domain of classical cadherins. Although pulldown assays suggest that the presence of N- and C-terminal β-catenin “tails” that flank the armadillo repeat region reduces the affinity for desmosomal cadherins, calorimetric measurements show no significant effects of the tails on binding to the cadherins. Using purified proteins, we show that desmosomal cadherins and α-catenin compete directly for binding to plakoglobin, consistent with the absence of α-catenin in desmosomes.
Molecular Biology of the Cell | 2013
Scott D. Hansen; Adam V. Kwiatkowski; Ouyang Cy; Liu H; Sabine Pokutta; Simon C. Watkins; Niels Volkmann; Dorit Hanein; William I. Weis; Mullins Rd; W J Nelson
αE-catenin regulates transitions in actin organization between cell migration and cell–cell adhesion by controlling barbed-end polymerization of unbranched actin filaments and inhibiting Arp2/3 complex and cofilin regulation of actin filament branching and disassembly.