Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sabine Riethdorf is active.

Publication


Featured researches published by Sabine Riethdorf.


Clinical Cancer Research | 2007

Detection of Circulating Tumor Cells in Peripheral Blood of Patients with Metastatic Breast Cancer: A Validation Study of the CellSearch System

Sabine Riethdorf; Herbert A. Fritsche; Volkmar Müller; Thomas Rau; Christian Schindlbeck; Brigitte Rack; Wolfgang Janni; Cornelia Coith; Katrin Beck; Fritz Jänicke; Summer Jackson; Terrie Gornet; Massimo Cristofanilli; Klaus Pantel

Purpose: The CellSearch system (Veridex, Warren, NJ) is designed to enrich and enumerate circulating tumor cells (CTCs) from peripheral blood. Here, we validated the analytic performance of this system for clinical use in patients with metastatic breast cancer. Experimental Design: This prospective multicenter study conducted at three independent laboratories involved samples from 92 patients with metastatic breast cancer. Intra- and inter-assay variability using controls containing defined numbers of cells (average, 50 and 1,000, respectively), cell stability based on varying storage and shipment conditions, recovery precision from samples spiked with 4 to 12 tumor cells, inter-instrument variability, and positivity of samples from metastatic breast cancer patients were tested. Results: Intra- and inter-assay precision for two sites were high: All eight positive controls analyzed in the same run and >95% of the run to run control values (n = 299) were within the specified ranges. Recovery rate of spiked samples averaged between 80% and 82%. CTCs were detected in ∼70% of metastatic breast cancer patients. CTC values of identical samples processed either immediately after blood drawing or after storage for 24, 48, or 72 h at room temperature or at 4°C did not differ significantly. Shipment of samples had no influence on CTC values. When analyzing identical samples in different centers, inter-instrument accordance was high. Conclusions: The CellSearch system enables the reliable detection of CTCs in blood and is suitable for the routine assessment of metastatic breast cancer patients in the clinical laboratory. Blood samples should be shipped at room temperature and CTC counts are stable for at least 72 h.


Nature Biotechnology | 2013

Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay.

Irène Baccelli; Andreas Schneeweiss; Sabine Riethdorf; Albrecht Stenzinger; Anja Schillert; Vanessa Vogel; Corinna Klein; Massimo Saini; Tobias Bäuerle; Markus Wallwiener; Thomas Höfner; Martin R. Sprick; Martina Scharpff; Frederik Marme; Hans Peter Sinn; Klaus Pantel; Wilko Weichert; Andreas Trumpp

It has been hypothesized that carcinoma metastasis is initiated by a subpopulation of circulating tumor cells (CTCs) found in the blood of patients. However, although the presence of CTCs is an indicator of poor prognosis in several carcinoma entities, the existence and phenotype of metastasis-initiating cells (MICs) among CTCs has not been experimentally demonstrated. Here we developed a xenograft assay and used it to show that primary human luminal breast cancer CTCs contain MICs that give rise to bone, lung and liver metastases in mice. These MIC-containing CTC populations expressed EPCAM, CD44, CD47 and MET. In a small cohort of patients with metastases, the number of EPCAM+CD44+CD47+MET+ CTCs, but not of bulk EPCAM+ CTCs, correlated with lower overall survival and increased number of metastasic sites. These data describe functional circulating MICs and associated markers, which may aid the design of better tools to diagnose and treat metastatic breast cancer.


The American Journal of Surgical Pathology | 2001

Ki-67, cyclin E, and p16ink4 are complimentary surrogate biomarkers for human papilloma virus-related cervical neoplasia

Jeffrey T. Keating; Aida Cviko; Sabine Riethdorf; Lutz Riethdorf; Bradley J. Quade; Deqin Sun; Stefan Duensing; Ellen E. Sheets; Karl Münger; Christopher P. Crum

Prior studies of Ki-67, cyclin E, and p16 expression have suggested that these biomarkers may be preferentially expressed in cervical neoplasia. This study examined and compared the distribution of staining for these three antigens in 1) normal and reactive epithelial changes, 2) diagnostically challenging cases (atypical metaplasia and atypical atrophy), 3) squamous intraepithelial lesions (SIL), and 4) high-and low-risk human papilloma virus (HPV) type-specific SIL. One hundred four epithelial foci from 99 biopsies were studied, including low-grade squamous intraepithelial lesions (LSIL; 24), high-grade squamous intraepithelial lesions (HSIL; 36), mature or immature (metaplastic) squamous epithelium (29), and atrophic or metaplastic epithelium with atypia (15). Cases were scored positive for Ki-67 expression if expression extended above the basal one third of the epithelium, for cyclin E if moderate to strong staining was present, and for p16 if moderate to strong diffuse or focal staining was present. HPV status was scored by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of extracted DNA. Immunohistochemical findings were correlated with histologic and viral data. Overall, a histologic diagnosis of SIL correlated strongly with all of the biomarkers used (p <0.001). Positive scores for Ki-67, cyclin E, and p16 were seen in 68.4%, 96.7%, and 100% of LSILs and 94.7%, 91.6%, and 100% of HSILs, respectively. Positive predictive values of these three biomarkers for HPV were 82.4%, 89.5%, and 91.4%, respectively. The positive predictive value for HPV of either cyclin E or p16 was 88.7%. Strong diffuse staining for p16 was significantly associated with high-risk HPV-associated lesions. Normal or reactive epithelial changes scored positive for the three biomarkers in 7.7%, 8.0%, and 12%, respectively. Limitations in specificity included minimal or no suprabasal staining for Ki-67 in immature condylomas and occasional suprabasal staining of reactive epithelial changes (10%), diffuse weak nuclear cyclin E staining in some normal or metaplastic epithelia, and diffuse weak basal p16 staining and occasional stronger focal positivity in normal epithelia. Ki-67, cyclin E, and p16 are complementary surrogate biomarkers for HPV-related preinvasive squamous cervical disease. (Because cyclin E and p16 are most sensitive for LSIL and HSIL [including high-risk HPV], respectively, use of these biomarkers in combination for resolving diagnostic problems, with an appreciation of potential background staining, is recommended.)


Cancer Research | 2013

Complex Tumor Genomes Inferred from Single Circulating Tumor Cells by Array-CGH and Next-Generation Sequencing

Ellen Heitzer; Martina Auer; Christin Gasch; Martin Pichler; Peter Ulz; Eva Maria Hoffmann; Sigurd Lax; Julie Waldispuehl-Geigl; Oliver Mauermann; Carolin Lackner; Gerald Höfler; Florian Eisner; Heinz Sill; Hellmut Samonigg; Klaus Pantel; Sabine Riethdorf; Thomas Bauernhofer; Jochen B. Geigl; Michael R. Speicher

Circulating tumor cells (CTC) released into blood from primary cancers and metastases reflect the current status of tumor genotypes, which are prone to changes. Here, we conducted the first comprehensive genomic profiling of CTCs using array-comparative genomic hybridization (CGH) and next-generation sequencing. We used the U.S. Food and Drug Administration-cleared CellSearch system, which detected CTCs in 21 of 37 patients (range, 1-202/7.5 mL sample) with stage IV colorectal carcinoma. In total, we were able to isolate 37 intact CTCs from six patients and identified in those multiple colorectal cancer-associated copy number changes, many of which were also present in the respective primary tumor. We then used massive parallel sequencing of a panel of 68 colorectal cancer-associated genes to compare the mutation spectrum in the primary tumors, metastases, and the corresponding CTCs from two of these patients. Mutations in known driver genes [e.g., adenomatous polyposis coli (APC), KRAS, or PIK3CA] found in the primary tumor and metastasis were also detected in corresponding CTCs. However, we also observed mutations exclusively in CTCs. To address whether these mutations were derived from a small subclone in the primary tumor or represented new variants of metastatic cells, we conducted additional deep sequencing of the primary tumor and metastasis and applied a customized statistical algorithm for analysis. We found that most mutations initially found only in CTCs were also present at subclonal level in the primary tumors and metastases from the same patient. This study paves the way to use CTCs as a liquid biopsy in patients with cancer, providing more effective options to monitor tumor genomes that are prone to change during progression, treatment, and relapse.


Clinical Cancer Research | 2010

Detection and HER2 Expression of Circulating Tumor Cells: Prospective Monitoring in Breast Cancer Patients Treated in the Neoadjuvant GeparQuattro Trial

Sabine Riethdorf; Volkmar Müller; Liling Zhang; Thomas Rau; Sibylle Loibl; Martina Komor; Marc Roller; Jens Huober; Tanja Fehm; Iris Schrader; Jörn Hilfrich; Frank Holms; Hans Tesch; Holger Eidtmann; Michael Untch; Gunter von Minckwitz; Klaus Pantel

Purpose: This study was aimed at detecting and characterizing circulating tumor cells (CTC) before and after neoadjuvant therapy (NT) in the peripheral blood of patients with breast cancer. Experimental Design: The clinical trial GeparQuattro incorporated NT approaches (epirubicin/cyclophosphamide prior to randomization to docetaxel alone, docetaxel in combination with capecitabine, or docetaxel followed by capecitabine) and additional trastuzumab treatment for patients with HER2-positive tumors. We used the Food and Drug Administration–approved CellSearch system for CTC detection and evaluation of HER2 expression and developed HER2 immunoscoring for CTC. Results: We detected ≥1 CTC/7.5 mL in 46 of 213 patients (21.6%) before NT and in 22 of 207 patients (10.6%) after NT (P = 0.002). Twenty (15.0%) initially CTC-positive cases were CTC-negative after NT, whereas 11 (8.3%) cases were CTC-positive after NT, although no CTC could be found before NT. CTC detection did not correlate with primary tumor characteristics. Furthermore, there was no association between tumor response to NT and CTC detection. HER2-overexpressing CTC were observed in 14 of 58 CTC-positive patients (24.1%), including 8 patients with HER2-negative primary tumors and 3 patients after trastuzumab treatment. CTC scored HER2-negative or weakly HER2-positive before or after NT were present in 11 of 21 patients with HER2-positive primary tumors. HER2 overexpression on CTC was restricted to ductal carcinomas and associated with high tumor stage (P = 0.002). Conclusion: CTC number was low in patients with primary breast cancer. The decrease in CTC incidence during treatment was not correlated with standard clinical characteristics and primary tumor response. Information on the HER2 status of CTC might be helpful for stratification and monitoring of HER2-directed therapies. Clin Cancer Res; 16(9); 2634–45. ©2010 AACR.


Clinical Cancer Research | 2005

Circulating Tumor Cells in Breast Cancer: Correlation to Bone Marrow Micrometastases, Heterogeneous Response to Systemic Therapy and Low Proliferative Activity

Volkmar Müller; Nicole Stahmann; Sabine Riethdorf; Thomas Rau; Tanja Zabel; Alexander Goetz; Fritz Jänicke; Klaus Pantel

Purpose: The incidence and biological characteristics of circulating tumor cells in the blood of patients with breast cancer were examined and subgroups were evaluated in the context of systemic treatment and the presence of disseminated tumor cells in bone marrow. Experimental Design: Circulating tumor cells were isolated from the peripheral blood of patients with breast cancer using a gradient system designed for the enrichment of circulating tumor cells (OncoQuick). Circulating tumor cells were identified with the anti-cytokeratin antibody, A45-B/B3. In subsets of patients, expression of the proliferation-associated Ki-67 antigen in circulating tumor cells and the concomitant presence of micrometastases in bone marrow were examined. Results: In patients with primary breast cancer (stage M0), circulating tumor cells were detected in 5 of 60 patients (8.3%) after surgery and before initiation of adjuvant chemotherapy; a positive correlation to the presence of disseminated tumor cells in bone marrow was observed (P = 0.030, n = 53). During the course of adjuvant chemotherapy, repeated analysis of 20 M0 patients revealed the occurrence of circulating tumor cells in 7 of 16 patients that were initially negative. Patients with metastatic disease (stage M1) showed circulating tumor cells in 25 of 63 cases (39.7%, P < 0.0001 as compared with M0 patients), and a positive finding was correlated with elevated concentrations of the serum tumor marker CA15.3 (P = 0.0093). Performing repeated analysis in a subgroup of 25 M1 patients, circulating tumor cells were found more frequently in patients with progressive disease than in patients with stable disease or remission (87.5% versus 43.8% of patients with circulating tumor cells, respectively; P = 0.047). Independent of the disease-stage, none of the 47 patients examined for the proliferative status of their circulating tumor cells showed coexpression of Ki-67. Conclusions: Circulating tumor cells seem to be nonproliferating cells that persist during chemotherapy. Circulating tumor cell detection is linked to disease progression and elevated tumor marker concentrations in patients with metastatic breast cancer.


International Journal of Cancer | 2008

Review: Biological relevance of disseminated tumor cells in cancer patients

Sabine Riethdorf; Harriet Wikman; Klaus Pantel

The prognosis of cancer patients is largely determined by the occurrence of distant metastases. In patients with primary tumors, this relapse is mainly due to clinically occult micrometastasis present in secondary organs at primary diagnosis but not detectable even with high resolution imaging procedures. Sensitive and specific immunocytochemical and molecular assays enable the detection and characterization of disseminated tumor cells (DTC) at the single cell level in bone marrow (BM) as the common homing site of DTC and circulating tumor cells (CTC) in peripheral blood. Because of the high variability of results in DTC and CTC detection, there is an urgent need for standardized methods. In this review, we will focus on BM and present currently available methods for the detection and characterization of DTC. Furthermore, we will discuss data on the biology of DTC and the clinical relevance of DTC detection. While the prognostic impact of DTC in BM has clearly been shown for primary breast cancer patients, less is known about the clinical relevance of DTC in patients with other carcinomas. Current findings suggest that DTC are capable to survive chemotherapy and persist in a dormant nonproliferating state over years. To what extent these DTC have stem cell properties is subject of ongoing investigations. Further characterization is required to understand the biology of DTC and to identify new targets for improved risk prevention and tailoring of therapy. Our review will focus on breast, colon, lung, and prostate cancer as the main tumor entities in Europe and the United States.


Clinical Cancer Research | 2005

Changes in cytoskeletal protein composition indicative of an epithelial-mesenchymal transition in human micrometastatic and primary breast carcinoma cells

Birthe Willipinski-Stapelfeldt; Sabine Riethdorf; Volker Assmann; Ute Woelfle; Thomas Rau; Guido Sauter; Jochen Heukeshoven; Klaus Pantel

Purpose: The bone marrow is a frequent and clinically important homing site for early disseminated breast cancer cells. Here, we aimed to profile the protein expression of these cells using unique cell line models and to evaluate the prognostic relevance of candidate gene expression for breast cancer patients. Experimental Design: To identify expression patterns characteristic for micrometastatic cells, three different cell lines (BC-K1, BC-P1, and BC-S1) established by SV40 immortalization of cancer cells isolated from the bone marrow of patients with breast cancer were compared with MCF-7 breast cancer and SV40 immortalized normal breast ductal cells (MTSV-1.7) using two-dimensional gel electrophoresis followed by MALDI-ToF analysis. The prognostic significance and clinicopathologic associations of selected differentially expressed proteins were evaluated using high-density breast cancer tissue microarrays. Results: In contrast to MCF-7 and MTSV1-7 reference cell lines, all micrometastatic cancer cell lines displayed loss of epithelial cytokeratins (CK8, CK18, and CK19) and ectopic expression of vimentin commonly present in mesenchymal cells. Immunohistochemical analysis of 2,517 samples of breast cancer further showed that loss of cytokeratin and ectopic vimentin expression were significantly associated with a higher tumor grade, high mitotic index, and negative estrogen/progesterone-receptor status. Although in univariate analyses significantly related to clinical outcome, none of the cytokeratins analyzed were independently associated with either overall or cancer-specific survival. Conclusions: Micrometastatic cancer cells exhibit marked changes in the expression pattern of cytoskeletal proteins indicative of an epithelial-mesenchymal transition. This phenotypical change could already be detected in primary tumors and is associated with the aggressive behavior of breast cancer cells in vivo.


Cancer Cell | 2011

VCAM-1 Promotes Osteolytic Expansion of Indolent Bone Micrometastasis of Breast Cancer by Engaging α4β1-Positive Osteoclast Progenitors

Xin Lu; Euphemia Mu; Yong Wei; Sabine Riethdorf; Qifeng Yang; Min Yuan; Jun Yan; Yuling Hua; Benjamin Tiede; Xuemin Lu; Bruce G. Haffty; Klaus Pantel; Joan Massagué; Yibin Kang

Breast cancer patients often develop locoregional or distant recurrence years after mastectomy. Understanding the mechanism of metastatic recurrence after dormancy is crucial for improving the cure rate for breast cancer. Here, we characterize a bone metastasis dormancy model to show that aberrant expression of vascular cell adhesion molecule 1 (VCAM-1), in part dependent on the activity of the NF-κB pathway, promotes the transition from indolent micrometastasis to overt metastasis. By interacting with the cognate receptor integrin α4β1, VCAM-1 recruits monocytic osteoclast progenitors and elevates local osteoclast activity. Antibodies against VCAM-1 and integrin α4 effectively inhibit bone metastasis progression and preserve bone structure. These findings establish VCAM-1 as a promising target for the prevention and inhibition of metastatic recurrence in bone.


Clinical Cancer Research | 2012

Meta-analysis of the prognostic value of circulating tumor cells in breast cancer

Liling Zhang; Sabine Riethdorf; Gang Wu; Tao Wang; Kunyu Yang; Gang Peng; Junli Liu; Klaus Pantel

Purpose: The prognostic value of circulating tumor cells (CTC) detected in breast cancer patients is currently under debate. Different time points of blood collections and various CTC assays have been used in the past decades. Here, we conducted the first comprehensive meta-analysis of published literature on the prognostic relevance of CTC, including patients with early and advanced disease. Experimental Design: A comprehensive search for articles published between January 1990 and January 2012 was conducted; reviews of each study were conducted and data were extracted. The main outcomes analyzed were overall survival (OS) and disease-free survival (DFS) in early-stage breast cancer patients, as well as progression-free survival (PFS) and OS in metastatic breast cancer patients. Pooled hazard ratio (HR) and 95% confidence intervals (CIs) were calculated using the random and the fixed-effects models. Subgroup and sensitivity analyses were also conducted. Results: Forty-nine eligible studies enrolling 6,825 patients were identified. The presence of CTC was significantly associated with shorter survival in the total population. The prognostic value of CTC was significant in both early (DFS: HR, 2.86; 95% CI, 2.19–3.75; OS: HR, 2.78; 95% CI, 2.22–3.48) and metastatic breast cancer (PFS: HR, 1.78; 95% CI, 1.52–2.09; OS: HR, 2.33; 95% CI, 2.09–2.60). Further subgroup analyses showed that our results were stable irrespective of the CTC detection method and time point of blood withdrawal. Conclusion: Our present meta-analysis indicates that the detection of CTC is a stable prognosticator in patients with early-stage and metastatic breast cancer. Further studies are required to explore the clinical utility of CTC in breast cancer. Clin Cancer Res; 18(20); 5701–10. ©2012 AACR.

Collaboration


Dive into the Sabine Riethdorf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tanja Fehm

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Schneeweiss

University Hospital Heidelberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge