Sabrina B. Sholts
National Museum of Natural History
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sabrina B. Sholts.
Forensic Science International | 2012
Brian M. Shearer; Sabrina B. Sholts; Heather M. Garvin; Sebastian K.T.S. Wärmländer
Sex estimation from the human skull is often a necessary step when constructing a biological profile from unidentified human remains. Traditional methods for determining the sex of a skull require observers to rank the expression of sexually dimorphic skeletal traits by subjectively assessing their qualitative differences. One of these traits is the prominence of the glabellar region above the browridge. In this paper, the volume of the browridge region was measured from digital 3D models of 128 dry crania (65 female, 63 male). The 3D models were created with a desktop laser scanner, and the browridge region of each 3D model was isolated using geometric planes defined by cranial landmarks. Statistical analysis of browridge-to-cranium volume ratios revealed significant differences between male and female crania. Differences were also observed between geographically distinct populations, and between temporally distinct populations from the same locale. The results suggest that in the future, sex determination of human crania may be assisted by quantitative computer-based volume calculations from 3D models, which can provide increased objectivity and repeatability when compared to traditional forensic techniques. The method presented in this paper can easily be extended to other volumetric regions of the human cranium.
American Journal of Physical Anthropology | 2014
Heather M. Garvin; Sabrina B. Sholts; Laurel A. Mosca
Sex estimation from the skull is commonly performed by physical and forensic anthropologists using a five-trait scoring system developed by Walker. Despite the popularity of this method, validation studies evaluating its accuracy across a variety of samples are lacking. Furthermore, it remains unclear what other intrinsic or extrinsic variables are related to the expression of these traits. In this study, cranial trait scores and postcranial measurements were collected from four diverse population groups (U.S. Whites, U.S. Blacks, medieval Nubians, and Arikara Native Americans) following Walkers protocols (total n = 499). Univariate and multivariate analyses were utilized to evaluate the accuracy of these traits in sex estimation, and to test for the effects of population, age, and body size on trait expressions. Results revealed significant effects of population on all trait scores. Sample-specific correct sex classification rates ranged from 74% to 94%, with an overall accuracy of 85% for the pooled sample. Classification performance varied among the traits (best for glabella and mastoid scores and worst for nuchal scores). Furthermore, correlations between traits were weak or nonsignificant, suggesting that different factors may influence individual traits. Some traits displayed correlations with age and/or postcranial size that were significant but weak, and within-population analyses did not reveal any consistent relationships between these traits across all groups. These results indicate that neither age nor body size plays a large role in trait expression, and thus does not need to be incorporated into sex estimation methods.
Journal of Trace Elements in Medicine and Biology | 2016
Cecilia Wallin; Yashraj S. Kulkarni; Axel Abelein; Jüri Jarvet; Qinghua Liao; Birgit Strodel; Lisa Olsson; Jinghui Luo; Jan Pieter Abrahams; Sabrina B. Sholts; Per M. Roos; Shina Caroline Lynn Kamerlin; Astrid Gräslund; Sebastian K.T.S. Wärmländer
Growing evidence links neurodegenerative diseases to metal exposure. Aberrant metal ion concentrations have been noted in Alzheimers disease (AD) brains, yet the role of metals in AD pathogenesis remains unresolved. A major factor in AD pathogenesis is considered to be aggregation of and amyloid formation by amyloid-β (Aβ) peptides. Previous studies have shown that Aβ displays specific binding to Cu(II) and Zn(II) ions, and such binding has been shown to modulate Aβ aggregation. Here, we use nuclear magnetic resonance (NMR) spectroscopy to show that Mn(II) ions also bind to the N-terminal part of the Aβ(1-40) peptide, with a weak binding affinity in the milli- to micromolar range. Circular dichroism (CD) spectroscopy, solid state atomic force microscopy (AFM), fluorescence spectroscopy, and molecular modeling suggest that the weak binding of Mn(II) to Aβ may not have a large effect on the peptides aggregation into amyloid fibrils. However, identification of an additional metal ion displaying Aβ binding reveals more complex AD metal chemistry than has been previously considered in the literature.
World Archaeology | 2014
Joseph A. M. Gingerich; Sabrina B. Sholts; Sebastian K.T.S. Wärmländer; Dennis J. Stanford
Abstract Differences in Paleoindian projectile point morphology have previously been used to define technologies, infer colonization patterns, propose chronological and regional boundaries. In this study, we evaluate the effectiveness of traditional linear measurements and ratios, flake scar angles, and 3D model-based flake contours for the statistical differentiation of projectile point type(s) and reduction technique. Sixty-three fluted bifaces from eastern North America and fourteen replicate Clovis points are analyzed. Discriminant analysis shows that 3D model-based Fourier descriptors of flake scar contours are less successful than traditional metrics in correctly differentiating styles, but more successful in identifying individual knappers. Changes in the symmetry of front and back flake scars between Clovis and later fluted point styles indicate a possible shift in reduction techniques. These findings demonstrate the usefulness of both traditional and modern morphometric variables to quantify biface morphology, and address questions about social interaction and technological change in Pleistocene North America.
JAMA | 2017
Daniel R. Lucey; Hannah Cummins; Sabrina B. Sholts
Between January 1, 2015, and December 14, 2016, the World Health Organization (WHO) found mosquito-transmitted Zika virus infections in 69 countries or territories and person-to-person Zika virus transmission in 13 of them. Of great concern, in 29 of the 69 countries, Zika virus–associated central nervous system (CNS) malformations (such as microcephaly) were found among infants and fetuses suggestive of congenital infection.1 Although these Zika virus–related CNS abnormalities were first recognized in the Americas in 2015, the earliest known cases occurred in the French Polynesia islands in 2014. Zika virus–related CNS abnormalities also have been seen in Southeast Asia and West Africa.1
Environmental Health Perspectives | 2011
Sebastian K.T.S. Wärmländer; Sabrina B. Sholts; Jon M. Erlandson; Thor Gjerdrum; Roger Westerholm
Background: The negative health effects of polycyclic aromatic hydrocarbons (PAHs) are well established for modern human populations but have so far not been studied in prehistoric contexts. PAHs are the main component of fossil bitumen, a naturally occurring material used by past societies such as the Chumash Indians in California as an adhesive, as a waterproofing agent, and for medicinal purposes. The rich archaeological and ethnohistoric record of the coastal Chumash suggests that they were exposed to multiple uptake pathways of bituminous PAHs, including direct contact, fume inhalation, and oral uptake from contaminated water and seafood. Objectives: We investigated the possibility that PAHs from natural bitumen compromised the health of the prehistoric Chumash Indians in California. Conclusions: Exposure of the ancient Chumash Indians to toxic PAHs appears to have gradually increased across a period of 7,500 years because of an increased use of bitumen in the Chumash technology, together with a dietary shift toward PAH-contaminated marine food. Skeletal analysis indicates a concurrent population health decline that may be related to PAH uptake. However, establishing such a connection is virtually impossible without knowing the actual exposure levels experienced by these populations. Future methodological research may provide techniques for determining PAH levels in ancient skeletal material, which would open new avenues for research on the health of prehistoric populations and on the long-term effects of human PAH exposure.
Clinical Anatomy | 2015
Sabrina B. Sholts; Mario Šlaus; Alan Bosnar; Sebastian K.T.S. Wärmländer
The mastoid process is one of the most sexually dimorphic features in the human skull, and is therefore often used to identify the sex of skeletons. Numerous techniques for assessing variation in the size and shape of the mastoid process have been proposed and implemented in osteological research, but its complex form still presents difficulties for consistent and effective analysis. In this article, we compare the different techniques and variables that have been used to define, measure, and visually score sexual dimorphism in the mastoid process. We argue that the current protocols fail to capture the full morphological range of this bony projection, and suggest ways of improving and standardizing them, regarding both traditional and 3D‐based approaches. Clin. Anat. 28:593–601, 2015.
Journal of Inorganic Biochemistry | 2013
Joel Lindgren; Patrik Segerfeldt; Sabrina B. Sholts; Astrid Gräslund; Amelie Eriksson Karlström; Sebastian K.T.S. Wärmländer
Aggregation of amyloid-beta (Aβ) peptides into oligomers and amyloid plaques in the human brain is considered a causative factor in Alzheimers disease (AD). As metal ions are over-represented in AD patient brains, and as distinct Aβ aggregation pathways in presence of Cu(II) have been demonstrated, metal binding to Aβ likely affects AD progression. Aβ aggregation is moreover pH-dependent, and AD appears to involve inflammatory conditions leading to physiological acidosis. Although metal binding specificity to Aβ varies at different pHs, metal binding affinity to Aβ has so far not been quantitatively investigated at sub-neutral pH levels. This may be explained by the difficulties involved in studying monomeric peptide properties under aggregation-promoting conditions. We have recently devised a modified Affibody molecule, Z(Aβ3)(12-58), that binds Aβ with sub-nanomolar affinity, thereby locking the peptide in monomeric form without affecting the N-terminal region where metal ions bind. Here, we introduce non-fluorescent Aβ-binding Affibody variants that keep Aβ monomeric while only slightly affecting the Aβ peptides metal binding properties. Using fluorescence spectroscopy, we demonstrate that Cu(II)/Aβ(1-40) binding is almost two orders of magnitude weaker at pH 5.0 (apparent K(D)=51 μM) than at pH 7.3 (apparent K(D)=0.86 μM). This effect is arguably caused by protonation of the histidines involved in the metal ligandation. Our results indicate that engineered variants of Affibody molecules are useful for studying metal-binding and other properties of monomeric Aβ under various physiological conditions, which will improve our understanding of the molecular mechanisms involved in AD.
Journal of Alzheimer's Disease | 2016
Ann Tiiman; Jinghui Luo; Cecilia Wallin; Lisa Olsson; Joel Lindgren; Jϋri Jarvet; Roos Per; Sabrina B. Sholts; Shai Rahimipour; Jan Pieter Abrahams; Amelie Eriksson Karlström; Astrid Gräslund; Sebastian K.T.S. Wärmländer
Aggregation of the amyloid-beta (Aβ) peptide into insoluble plaques is a major factor in Alzheimers disease (AD) pathology. Another major factor in AD is arguably metal ions, as metal dyshomeostasis is observed in AD patients, metal ions modulate Aβ aggregation, and AD plaques contain numerous metals including redox-active Cu and Fe ions. In vivo, Aβ is found in various cellular locations including membranes. So far, Cu(II)/Aβ interactions and ROS generation have not been investigated in a membrane environment. Here, we study Cu(II) and Zn(II) interactions with Aβ bound to SDS micelles or to engineered aggregation-inhibiting molecules (the cyclic peptide CP-2 and the ZAβ3(12-58)Y18L Affibody molecule). In all studied systems the Aβ N-terminal segment was found to be unbound, unstructured, and free to bind metal ions. In SDS micelles, Aβ was found to bind Cu(II) and Zn(II) with the same ligands and the same KD as in aqueous solution. ROS was generated in all Cu(II)/Aβ complexes. These results indicate that binding of Aβ to membranes, drugs, and other entities that do not interact with the Aβ N-terminal part, appears not to compromise the N-terminal segments ability to bind metal ions, nor impede the capacity of N-terminally bound Cu(II) to generate ROS.
Archaeological and Anthropological Sciences | 2016
Michael Neiß (Neiss); Sabrina B. Sholts; Sebastian K.T.S. Wärmländer
Three-dimensional (3D) laser scanning is a nondestructive and versatile technique that provides archaeologists with 3D models of archaeological and ethnographic objects. We have previously shown that 3D models facilitate shape analysis of archaeological bones and stone tools, due to the high measurement accuracy inherent in the latest generation of 3D laser scanners. Here, we explore the utility of 3D modeling as a tool for analyzing Viking Age metal artefacts with complex morphologies. Four highly ornate Viking Age brooches from Scandinavia and Russia were digitized with a portable laser scanner, and the resulting 3D models were used in three case studies of (a) artefact reconstruction, (b) tool mark analysis, and (c) motif documentation. The results revealed both strengths and limitations of the employed techniques. 3D modeling proved to be very well suited for artefact reconstruction and was helpful also in the stylistic and motif analysis. The tool mark analysis was only partially successful, due to the resolution limits of the laser scanner used. 3D-based motif analysis of a grandiose Scandinavian-style brooch from Yelets, Russia, identified an anthropomorphic figure with a bird-like body that previously has been overlooked. This figure may be a Rurikid coat of arms, possibly linking the object to a princely household and providing further evidence for a connection between Scandinavia and the Rurikids. As 3D technology keeps improving, we expect that additional applications for 3D modeling in archaeology will be developed, likely leading to many new findings when old objects are re-analyzed with modern techniques. However, our results indicate that 3D modeling cannot completely replace traditional artefact analysis—instead, we argue that the two approaches are best used in combination.