Sabrina Heng
University of Adelaide
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sabrina Heng.
Bioorganic & Medicinal Chemistry | 2009
Sabrina Heng; Kimberly R. Gryncel; Evan R. Kantrowitz
The identification of a proper lead compound for fructose 1,6-bisphosphatase (FBPase) is a critical step in the process of developing novel therapeutics against type-2 diabetes. Herein, we have successfully generated a library of allosteric inhibitors against FBPase as potential anti-diabetic drugs, of which, the lead compound 1b was identified through utilizing a virtual high-throughput screening (vHTS) system, which we have developed. The thiazole-based core structure was synthesized via the condensation of alpha-bromo-ketones with thioureas and substituents on the two aryl rings were varied. 4c was found to inhibit pig kidney FBPase approximately fivefold better than 1b. In addition, we have also identified 10b, a tight binding fragment, which can be use for fragment-based drug design purposes.
Langmuir | 2011
Stephen C. Warren-Smith; Sabrina Heng; Heike Ebendorff-Heidepriem; Andrew D. Abell; Tanya M. Monro
The first microstructured optical fiber-based sensor platform for aluminum ions using a surface-attached derivative of lumogallion (3), a known fluorescence-based indicator, has been fabricated. These fibers allow for strong evanescent field interactions with the surrounding media because of the small core size while also providing the potential for real-time and distributed measurements. The fluorescence response to aluminum ions was first demonstrated by applying the procedure to glass slides. This was achieved through the covalent attachment of the fluorophore to a polyelectrolyte-coated glass surface and then to the internal holes of a suspended-core microstructured optical fiber to give an effective aluminum sensor. Whereas the sensor platform reported is fabricated for aluminum, the approach is versatile, with applicability to the detection of other ions.
Analytical Chemistry | 2014
Sabrina Heng; Adrian M. Mak; Daniel B. Stubing; Tanya M. Monro; Andrew D. Abell
The first selective, dual sensor for Ca(2+) and Cd(2+) capable of detection at 100 pM concentrations was designed and synthesized. The experimental observations made for the MC-cation complexes and the selectivity of compounds 1 and 2 with Ca(2+) and Cd(2+) ions were further explored using density functional theory. A first step toward a nanoliter-scale dip sensor for the dual sensing of Ca(2+) and Cd(2+) was demonstrated using microstructured optical fiber as the sensing platform which is important for ion sensing in confined spaces such as the medium surrounding cell clusters. In addition, this system displays picomolar sensitivity for these ions, with an added ability to reproducibly turn ion-binding on/off.
RSC Advances | 2013
Sabrina Heng; Mai-Chi Nguyen; Roman Kostecki; Tanya M. Monro; Andrew D. Abell
The first nanoliter-scale regenerable ion sensor based on a microstructured optical fibre (MOF) is reported. The air holes of the MOF are functionalized with a monoazacrown bearing spiropyran to give a switchable sensor that detects lithium ions down to 100 nM in nanoliter-scale volumes. Ion binding is turned on and off on upon irradiation with light, with the sensor being unaffected by multiple rounds of photoswitching. Unbound ions are flushed from the fibre in the ‘off’ state to allow the sensor to be reused. The integration of an ionophore into the sensor paves the way for the development of highly specific light-based sensing platforms that are readily adaptable to sense a particular ion simply by altering the ionophore design.
Biomacromolecules | 2013
Sabrina Heng; Christopher A. McDevitt; Daniel B. Stubing; Jonathan J. Whittall; Jeremy G. Thompson; Timothy K. Engler; Andrew D. Abell; Tanya M. Monro
A new biologically compatible Zn(II) sensor was fabricated by embedding a Zn(II) sensing spiropyran within the surface of a liposome derived from Escherichia coli lipids (LSP2). Solution-based experiments with increasing Zn(II) concentrations show improved aqueous solubility and sensitivity compared to the isolated spiropyran molecule (SP2). LSP2 is capable of sensing Zn(II) efflux from dying cells with preliminary data indicating that sensing is localized near the surface membrane of HEK 293 cells. Finally, LSP2 is suitable for development into a nanoliter-scale dip-sensor for Zn(II) using microstructured optical fiber as the sensing platform to detect Zn(II) in the range of 100 ρM with minimal photobleaching. Existing spiropyran based sensing molecules can thus be made biologically compatible, with an ability to operate with improved sensitivity using nanoscale liquid sample volumes. This work represents the first instance where photochromic spiropyran molecules and liposomes are combined to create a new and multifunctional sensing entity for Zn(II).
European Journal of Medicinal Chemistry | 2010
Sabrina Heng; Katharine M. Harris; Evan R. Kantrowitz
Natural products often contain unusual scaffold structures that may be elaborated by combinatorial methods to develop new drug-like molecules. Visual inspection of more than 128 natural products with some type of anti-diabetic activity suggested that a subset might provide novel scaffolds for designing potent inhibitors against fructose 1,6-bisphosphatase (FBPase), an enzyme critical in the control of gluconeogenesis. Using in silico docking methodology, these were evaluated to determine those that exhibited affinity for the AMP binding site. Achyrofuran from the South American plant Achyrocline satureoides, was selected for further investigation. Using the achyrofuran scaffold, inhibitors against FBPase were developed. Compounds 15 and 16 inhibited human liver and pig kidney FBPases at IC50 values comparable to that of AMP, the natural allosteric inhibitor.
ACS Applied Materials & Interfaces | 2016
Sabrina Heng; Christopher A. McDevitt; Roman Kostecki; Jacqueline R. Morey; Bart A. Eijkelkamp; Heike Ebendorff-Heidepriem; Tanya M. Monro; Andrew D. Abell
Sensing platforms that allow rapid and efficient detection of metal ions would have applications in disease diagnosis and study, as well as environmental sensing. Here, we report the first microstructured optical fiber-based biosensor for the reversible and nanoliter-scale measurement of metal ions. Specifically, a photoswitchable spiropyran Zn(2+) sensor is incorporated within the microenvironment of a liposome attached to microstructured optical fibers (exposed-core and suspended-core microstructured optical fibers). Both fiber-based platforms retains high selectivity of ion binding associated with a small molecule sensor, while also allowing nanoliter volume sampling and on/off switching. We have demonstrated that multiple measurements can be made on a single sample without the need to change the sensor. The ability of the new sensing platform to sense Zn(2+) in pleural lavage and nasopharynx of mice was compared to that of established ion sensing methodologies such as inductively coupled plasma mass spectrometry (ICP-MS) and a commercially available fluorophore (Fluozin-3), where the optical-fiber-based sensor provides a significant advantage in that it allows the use of nanoliter (nL) sampling when compared to ICP-MS (mL) and FluoZin-3 (μL). This work paves the way to a generic approach for developing surface-based ion sensors using a range of sensor molecules, which can be attached to a surface without the need for its chemical modification and presents an opportunity for the development of new and highly specific ion sensors for real time sensing applications.
Chemistry: A European Journal | 2015
Xiaozhou Zhang; Sabrina Heng; Andrew D. Abell
Here the synthesis and characterization of a new class of spiropyran-based protease inhibitor is reported that can be reversibly photoswitched between an active spiropyran (SP) isomer and a less active merocyanine (MC) isomer upon irradiation with UV and visible light, respectively, both in solution and on a surface of a microstructured optical fiber (MOF). The most potent inhibitor in the series (SP-3 b) has a C-terminal phenylalanyl-based α-ketoester group and inhibits α-chymotrypsin with a Ki of 115 nM. An analogue containing a C-terminal Weinreb amide (SP-2 d) demonstrated excellent stability and photoswitching in solution and was attached to the surface of a MOF. The SP isomer of Weinreb amide 2 d is a competitive reversible inhibitor in solution and also on fiber, while the corresponding MC isomer was significantly less active in both media. The ability of this new class of spiropyran-based protease inhibitor to modulate enzyme activity on a MOF paves the way for sensing applications.
Biosensors | 2017
Sabrina Heng; Xiaozhou Zhang; Jinxin Pei; Andrew D. Abell
γ-Glutamyl-cysteinyl-glycine (GSH) plays a critical role in maintaining redox homeostasis in biological systems and a decrease in its cellular levels is associated with diseases. Existing fluorescence-based chemosensors for GSH acts as irreversible reaction-based probes that exhibit a maximum fluorescence (‘turn-on’) once the reaction is complete, regardless of the actual concentration of GSH. A reversible, reaction-based ‘turn-off’ probe (1) is reported here to sense the decreasing levels of GSH, a situation known to occur at the onset of various diseases. The more fluorescent merocyanine (MC) isomer of 1 exists in aqueous solution and this reacts with GSH to induce formation of the ring-closed spiropyran (SP) isomer, with a measurable decrease in absorbance and fluorescence (‘turn-off’). Sensor 1 has good aqueous solubility and shows an excellent selectivity for GSH over other biologically relevant metal ions and aminothiol analytes. The sensor permeates HEK 293 cells and an increase in fluorescence is observed on adding buthionine sulfoximine, an inhibitor of GSH synthesis.
OFS2014 23rd International Conference on Optical Fiber Sensors | 2014
Roman Kostecki; Sabrina Heng; Heike Ebendorff-Heidepriem; Andrew D. Abell; Tanya M. Monro
The results of functionalizing exposed-core optical fiber with multiligand binding sensor molecules for ion detection is presented. We show that the capacity of the sensor molecules to bind multiple ligands is negated when the sensor molecules are covalently bound, making the method ineffective where multiligand binding fluoroionophores are needed. An alternate functionalization method using thin film polymer doped with multiligand binding fluoroionophores is shown, demonstrating the ability for ion detection in a case where multiligand binding is needed. This one step functionalizing process for optical fiber sensing applications does not require surface attachment functional groups and has the potential to be inline with fiber drawing so that long lengths of functionalized fiber can be fabricated.