Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sabrina Schroeder is active.

Publication


Featured researches published by Sabrina Schroeder.


Nature Cell Biology | 2009

Induction of autophagy by spermidine promotes longevity

Tobias Eisenberg; Heide Knauer; Alexandra Schauer; Sabrina Büttner; Christoph Ruckenstuhl; Didac Carmona-Gutierrez; Julia Ring; Sabrina Schroeder; Christoph Magnes; Lucia Antonacci; Heike Fussi; Luiza Deszcz; Regina Hartl; Elisabeth Schraml; Alfredo Criollo; Evgenia Megalou; Daniela Weiskopf; Peter Laun; Gino Heeren; Michael Breitenbach; Beatrix Grubeck-Loebenstein; Eva Herker; Birthe Fahrenkrog; Kai-Uwe Fröhlich; Frank Sinner; Nektarios Tavernarakis; Nadege Minois; Guido Kroemer; Frank Madeo

Ageing results from complex genetically and epigenetically programmed processes that are elicited in part by noxious or stressful events that cause programmed cell death. Here, we report that administration of spermidine, a natural polyamine whose intracellular concentration declines during human ageing, markedly extended the lifespan of yeast, flies and worms, and human immune cells. In addition, spermidine administration potently inhibited oxidative stress in ageing mice. In ageing yeast, spermidine treatment triggered epigenetic deacetylation of histone H3 through inhibition of histone acetyltransferases (HAT), suppressing oxidative stress and necrosis. Conversely, depletion of endogenous polyamines led to hyperacetylation, generation of reactive oxygen species, early necrotic death and decreased lifespan. The altered acetylation status of the chromatin led to significant upregulation of various autophagy-related transcripts, triggering autophagy in yeast, flies, worms and human cells. Finally, we found that enhanced autophagy is crucial for polyamine-induced suppression of necrosis and enhanced longevity.


Journal of Cell Biology | 2011

Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome

Eugenia Morselli; Guillermo Mariño; Martin V. Bennetzen; Tobias Eisenberg; Evgenia Megalou; Sabrina Schroeder; Sandra Cabrera; Paule Bénit; Pierre Rustin; Alfredo Criollo; Oliver Kepp; Lorenzo Galluzzi; Shensi Shen; Shoaib Ahmad Malik; Maria Chiara Maiuri; Yoshiyuki Horio; Carlos López-Otín; Jens S. Andersen; Nektarios Tavernarakis; Frank Madeo; Guido Kroemer

The acetylase inhibitor spermidine and the sirtuin-1 activator resveratrol disrupt the antagonistic network of acetylases and deacetylases that regulate autophagy.


Molecular Cell | 2014

Regulation of Autophagy by Cytosolic Acetyl-Coenzyme A

Guillermo Mariño; Federico Pietrocola; Tobias Eisenberg; Yongli Kong; Shoaib Ahmad Malik; Aleksandra Andryushkova; Sabrina Schroeder; Tobias Pendl; Alexandra Harger; Mireia Niso-Santano; Naoufal Zamzami; Marie Scoazec; Silvère Durand; David P. Enot; Álvaro F. Fernández; Isabelle Martins; Oliver Kepp; Laura Senovilla; Chantal Bauvy; Eugenia Morselli; Erika Vacchelli; Martin V. Bennetzen; Christoph Magnes; Frank Sinner; Thomas R. Pieber; Carlos López-Otín; Maria Chiara Maiuri; Patrice Codogno; Jens S. Andersen; Joseph A. Hill

Acetyl-coenzyme A (AcCoA) is a major integrator of the nutritional status at the crossroads of fat, sugar, and protein catabolism. Here we show that nutrient starvation causes rapid depletion of AcCoA. AcCoA depletion entailed the commensurate reduction in the overall acetylation of cytoplasmic proteins, as well as the induction of autophagy, a homeostatic process of self-digestion. Multiple distinct manipulations designed to increase or reduce cytosolic AcCoA led to the suppression or induction of autophagy, respectively, both in cultured human cells and in mice. Moreover, maintenance of high AcCoA levels inhibited maladaptive autophagy in a model of cardiac pressure overload. Depletion of AcCoA reduced the activity of the acetyltransferase EP300, and EP300 was required for the suppression of autophagy by high AcCoA levels. Altogether, our results indicate that cytosolic AcCoA functions as a central metabolic regulator of autophagy, thus delineating AcCoA-centered pharmacological strategies that allow for the therapeutic manipulation of autophagy.


Cell Metabolism | 2014

Nucleocytosolic Depletion of the Energy Metabolite Acetyl-Coenzyme A Stimulates Autophagy and Prolongs Lifespan

Tobias Eisenberg; Sabrina Schroeder; Aleksandra Andryushkova; Tobias Pendl; Victoria Küttner; Anuradha Bhukel; Guillermo Mariño; Federico Pietrocola; Alexandra Harger; Andreas Zimmermann; Tarek Moustafa; Adrian Sprenger; Evelyne Jany; Sabrina Büttner; Didac Carmona-Gutierrez; Christoph Ruckenstuhl; Julia Ring; Wieland Reichelt; Katharina Schimmel; Tina Leeb; Claudia Moser; Stefanie Schatz; Lars Peter Kamolz; Christoph Magnes; Frank Sinner; Simon Sedej; Kai Uwe Fröhlich; Gábor Juhász; Thomas R. Pieber; Jörn Dengjel

Summary Healthy aging depends on removal of damaged cellular material that is in part mediated by autophagy. The nutritional status of cells affects both aging and autophagy through as-yet-elusive metabolic circuitries. Here, we show that nucleocytosolic acetyl-coenzyme A (AcCoA) production is a metabolic repressor of autophagy during aging in yeast. Blocking the mitochondrial route to AcCoA by deletion of the CoA-transferase ACH1 caused cytosolic accumulation of the AcCoA precursor acetate. This led to hyperactivation of nucleocytosolic AcCoA-synthetase Acs2p, triggering histone acetylation, repression of autophagy genes, and an age-dependent defect in autophagic flux, culminating in a reduced lifespan. Inhibition of nutrient signaling failed to restore, while simultaneous knockdown of ACS2 reinstated, autophagy and survival of ach1 mutant. Brain-specific knockdown of Drosophila AcCoA synthetase was sufficient to enhance autophagic protein clearance and prolong lifespan. Since AcCoA integrates various nutrition pathways, our findings may explain diet-dependent lifespan and autophagy regulation.


Nature Medicine | 2016

Cardioprotection and lifespan extension by the natural polyamine spermidine

Tobias Eisenberg; Mahmoud Abdellatif; Sabrina Schroeder; Uwe Primessnig; Slaven Stekovic; Tobias Pendl; Alexandra Harger; Julia Schipke; Andreas Zimmermann; Albrecht Schmidt; Mingming Tong; Christoph Ruckenstuhl; Christopher Dammbrueck; Angelina S. Gross; Viktoria Herbst; Christoph Magnes; Gert Trausinger; Sophie Narath; Andreas Meinitzer; Zehan Hu; Alexander H. Kirsch; Kathrin Eller; Didac Carmona-Gutierrez; Sabrina Büttner; Federico Pietrocola; Oskar Knittelfelder; Emilie Schrepfer; Patrick Rockenfeller; Corinna Simonini; Alexandros Rahn

Aging is associated with an increased risk of cardiovascular disease and death. Here we show that oral supplementation of the natural polyamine spermidine extends the lifespan of mice and exerts cardioprotective effects, reducing cardiac hypertrophy and preserving diastolic function in old mice. Spermidine feeding enhanced cardiac autophagy, mitophagy and mitochondrial respiration, and it also improved the mechano-elastical properties of cardiomyocytes in vivo, coinciding with increased titin phosphorylation and suppressed subclinical inflammation. Spermidine feeding failed to provide cardioprotection in mice that lack the autophagy-related protein Atg5 in cardiomyocytes. In Dahl salt-sensitive rats that were fed a high-salt diet, a model for hypertension-induced congestive heart failure, spermidine feeding reduced systemic blood pressure, increased titin phosphorylation and prevented cardiac hypertrophy and a decline in diastolic function, thus delaying the progression to heart failure. In humans, high levels of dietary spermidine, as assessed from food questionnaires, correlated with reduced blood pressure and a lower incidence of cardiovascular disease. Our results suggest a new and feasible strategy for protection against cardiovascular disease.


Nature Neuroscience | 2013

Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner

Varun K Gupta; Lisa Scheunemann; Tobias Eisenberg; Sara Mertel; Anuradha Bhukel; Tom S. Koemans; Jamie M. Kramer; Karen S. Y. Liu; Sabrina Schroeder; Hendrik G. Stunnenberg; Frank Sinner; Christoph Magnes; Thomas R. Pieber; Shubham Dipt; André Fiala; Annette Schenck; Martin Schwaerzel; Frank Madeo; Stephan J. Sigrist

Age-dependent memory impairment is known to occur in several organisms, including Drosophila, mouse and human. However, the fundamental cellular mechanisms that underlie these impairments are still poorly understood, effectively hampering the development of pharmacological strategies to treat the condition. Polyamines are among the substances found to decrease with age in the human brain. We found that levels of polyamines (spermidine, putrescine) decreased in aging fruit flies, concomitant with declining memory abilities. Simple spermidine feeding not only restored juvenile polyamine levels, but also suppressed age-induced memory impairment. Ornithine decarboxylase-1, the rate-limiting enzyme for de novo polyamine synthesis, also protected olfactory memories in aged flies when expressed specifically in Kenyon cells, which are crucial for olfactory memory formation. Spermidine-fed flies showed enhanced autophagy (a form of cellular self-digestion), and genetic deficits in the autophagic machinery prevented spermidine-mediated rescue of memory impairments. Our findings indicate that autophagy is critical for suppression of memory impairments by spermidine and that polyamines, which are endogenously present, are candidates for pharmacological intervention.


Molecular & Cellular Proteomics | 2012

Identification of Autophagosome-associated Proteins and Regulators by Quantitative Proteomic Analysis and Genetic Screens

Joern Dengjel; Maria Høyer-Hansen; Maria Overbeck Nielsen; Tobias Eisenberg; Lea M. Harder; Søren Schandorff; Thomas Farkas; Thomas Kirkegaard; Andrea C. Becker; Sabrina Schroeder; Katja Vanselow; Emma Lundberg; Mogens M. Nielsen; Anders R. Kristensen; Vyacheslav Akimov; Jakob Bunkenborg; Frank Madeo; Marja Jäättelä; Jens S. Andersen

Autophagy is one of the major intracellular catabolic pathways, but little is known about the composition of autophagosomes. To study the associated proteins, we isolated autophagosomes from human breast cancer cells using two different biochemical methods and three stimulus types: amino acid deprivation or rapamycin or concanamycin A treatment. The autophagosome-associated proteins were dependent on stimulus, but a core set of proteins was stimulus-independent. Remarkably, proteasomal proteins were abundant among the stimulus-independent common autophagosome-associated proteins, and the activation of autophagy significantly decreased the cellular proteasome level and activity supporting interplay between the two degradation pathways. A screen of yeast strains defective in the orthologs of the human genes encoding for a common set of autophagosome-associated proteins revealed several regulators of autophagy, including subunits of the retromer complex. The combined spatiotemporal proteomic and genetic data sets presented here provide a basis for further characterization of autophagosome biogenesis and cargo selection.


Autophagy | 2011

Longevity-relevant regulation of autophagy at the level of the acetylproteome.

Guillermo Mariño; Eugenia Morselli; Martin V. Bennetzen; Tobias Eisenberg; Evgenia Megalou; Sabrina Schroeder; Sandra Cabrera; Paule Bénit; Pierre Rustin; Alfredo Criollo; Oliver Kepp; Lorenzo Galluzzi; Shensi Shen; Shoaib Ahmad Malik; Maria Chiara Maiuri; Yoshiyuki Horio; Carlos López-Otín; Jens S. Andersen; Nektarios Tavernarakis; Frank Madeo; Guido Kroemer

The acetylase inhibitor, spermidine and the deacetylase activator, resveratrol, both induce autophagy and prolong life span of the model organism Caenorhabditis elegans in an autophagydependent fashion. Based on these premises, we investigated the differences and similarities in spermidine and resveratrol-induced autophagy. The deacetylase sirtuin 1 (SIRT1) and its orthologs are required for the autophagy induction by resveratrol but dispensable for autophagy stimulation by spermidine in human cells, Saccharomyces cerevisiae and C. elegans. SIRT1 is also dispensable for life-span extension by spermidine. Mass spectrometry analysis of the human acetylproteome revealed that resveratrol and/or spermidine induce changes in the acetylation of 560 peptides corresponding to 375 different proteins. Among these, 170 proteins are part of the recently elucidated human autophagy protein network. Importantly, spermidine and resveratrol frequently affect the acetylation pattern in a similar fashion. In the cytoplasm, spermidine and resveratrol induce convergent protein de-acetylation more frequently than convergent acetylation, while in the nucleus, acetylation is dominantly triggered by both agents. We surmise that subtle and concerted alterations in the acetylproteome regulate autophagy at multiple levels.


Autophagy | 2014

Acetyl-coenzyme A: A metabolic master regulator of autophagy and longevity

Sabrina Schroeder; Tobias Pendl; Andreas Zimmermann; Tobias Eisenberg; Didac Carmona-Gutierrez; Christoph Ruckenstuhl; Guillermo Mariño; Federico Pietrocola; Alexandra Harger; Christoph Magnes; Frank Sinner; Thomas R. Pieber; Jörn Dengjel; Stephan J. Sigrist; Guido Kroemer; Frank Madeo

As the major lysosomal degradation pathway, autophagy represents the guardian of cellular homeostasis, removing damaged and potentially harmful material and replenishing energy reserves in conditions of starvation. Given its vast physiological importance, autophagy is crucially involved in the process of aging and associated pathologies. Although the regulation of autophagy strongly depends on nutrient availability, specific metabolites that modulate autophagic responses are poorly described. Recently, we revealed nucleo-cytosolic acetyl-coenzyme A (AcCoA) as a phylogenetically conserved inhibitor of starvation-induced and age-associated autophagy. AcCoA is the sole acetyl-group donor for protein acetylation, explaining why pharmacological or genetic manipulations that modify the concentrations of nucleo-cytosolic AcCoA directly affect the levels of protein acetylation. The acetylation of histones and cytosolic proteins inversely correlates with the rate of autophagy in yeast and mammalian cells, respectively, despite the fact that the routes of de novo AcCoA synthesis differ across phyla. Thus, we propose nucleo-cytosolic AcCoA to act as a conserved metabolic rheostat, linking the cellular metabolic state to the regulation of autophagy via effects on protein acetylation.


Autophagy | 2017

Dietary spermidine for lowering high blood pressure

Tobias Eisenberg; Mahmoud Abdellatif; Andreas Zimmermann; Sabrina Schroeder; Tobias Pendl; Alexandra Harger; Slaven Stekovic; Julia Schipke; Christoph Magnes; Albrecht Schmidt; Christoph Ruckenstuhl; Christopher Dammbrueck; Angelina S. Gross; Viktoria Herbst; Didac Carmona-Gutierrez; Federico Pietrocola; Thomas R. Pieber; Stephan J. Sigrist; Wolfgang A. Linke; Christian Mühlfeld; Junichi Sadoshima; Joern Dengjel; Stefan Kiechl; Guido Kroemer; Simon Sedej; Frank Madeo

ABSTRACT Loss of cardiac macroautophagy/autophagy impairs heart function, and evidence accumulates that an increased autophagic flux may protect against cardiovascular disease. We therefore tested the protective capacity of the natural autophagy inducer spermidine in animal models of aging and hypertension, which both represent major risk factors for the development of cardiovascular disease. Dietary spermidine elicits cardioprotective effects in aged mice through enhancing cardiac autophagy and mitophagy. In salt-sensitive rats, spermidine supplementation also delays the development of hypertensive heart disease, coinciding with reduced arterial blood pressure. The high blood pressure-lowering effect likely results from improved global arginine bioavailability and protection from hypertension-associated renal damage. The polyamine spermidine is naturally present in human diets, though to a varying amount depending on food type and preparation. In humans, high dietary spermidine intake correlates with reduced blood pressure and decreased risk of cardiovascular disease and related death. Altogether, spermidine represents a cardio- and vascular-protective autophagy inducer that can be readily integrated in common diets.

Collaboration


Dive into the Sabrina Schroeder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandra Harger

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas R. Pieber

Medical University of Graz

View shared research outputs
Researchain Logo
Decentralizing Knowledge