Sachchida Nand Rai
Banaras Hindu University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sachchida Nand Rai.
Journal of Chemical Neuroanatomy | 2016
Sachchida Nand Rai; Satyndra Kumar Yadav; Divakar Singh; Surya Pratap Singh
Parkinsons disease (PD) is characterized by a slow and progressive degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc) region of brain. Oxidative stress and inflammation plays important role in the neurodegeneration and development of PD. Ursolic Acid (UA: 3β-hydroxy-urs-12-en-28-oic acid) is a natural pentacyclic triterpenoid found in various medicinal plants. Its anti-inflammatory and antioxidant activity is a well-established fact. In this paper, the neuroprotective efficiency of UA in MPTP induced PD mouse model has been explored. For this purpose, we divided 30 mice into 5 different groups; first was control, second was MPTP-treated, third, fourth and fifth were different doses of UA viz., 5 mg/kg, 25 mg/kg, and 50 mg/kg body weight (wt) respectively, along with MPTP. After 21 days of treatment, different behavioral parameters and biochemical assays were conducted. Tyrosine hydroxylase (TH) immunostaining of SN dopaminergic neurons as well as HPLC quantification of dopamine and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) were also performed. Our results proved that, UA improves behavioral deficits, restored altered dopamine level and protect dopaminergic neurons in the MPTP intoxicated mouse. Among three different doses, 25 mg/kg body wt was the most effective dose for the PD. This work reveals the potential of UA as a promising drug candidate for PD treatment.
Journal of Chemical Neuroanatomy | 2017
Satyndra Kumar Yadav; Sachchida Nand Rai; Surya Pratap Singh
Parkinsons disease is one of the most common neurodegenerative disease found in aged peoples. Plentiful studies are being conducted to find a suitable and effective cure for this disease giving special impetus on use of herbal plants. The study aimed at investigating the effect of ethanolic extract of Mucuna pruriens (Mp) on level of nitric oxide (NO) in paraquat (PQ) induced Parkinsons disease (PD) mouse model and its subsequent contribution to lipid peroxidation. Twenty four Swiss albino mice were divided into three groups; Control, PQ and PQ+Mp. PQ doses were given intraperitoneally, twice in a week and oral dose of ethanolic extract of Mp seed was given for 9 weeks. Nitrite content and lipid peroxidation was measured in all treated groups along with respective controls. RNA was isolated from the nigrostriatal tissue of control and the treated mice and was reverse transcribed into cDNA. PCR was performed to amplify iNOS mRNA and western blot analysis was performed to check its protein level. We had also perfused the mice in all treated group and performed Tyrosine hydroxylase (TH) and iNOS immunoreactivity in substantia nigra region of mice brain. PQ-treatment increased nitrite content, expression of iNOS and lipid peroxidation compared to respective controls. Mp treatment resulted in a significant attenuation of iNOS expression, nitrite content and lipid peroxidation demonstrating that it reduces nitric oxide in PQ-induced Parkinsons disease. Interestingly; we also observed that mRNA, protein expression and immunoreactivity of iNOS was significantly decreased after Mp treatment and TH immunoreactivity was significantly improved after the treatment of Mp. Our results demonstrated that Mp protects the dopaminergic neurons from the NO injury in substantia nigra.
Frontiers in Aging Neuroscience | 2017
Sachchida Nand Rai; Hareram Birla; Saumitra S. Singh; Walia Zahra; Ravishankar R. Patil; Jyoti P. Jadhav; Mallikarjuna Rao Gedda; S. P. Singh
Till date, drugs that have been used to manage Parkinson’s disease (PD) have only shown symptomatic relief with several adverse effects besides their inability to prevent neurodegeneration. Neuroinflammation plays an important role in the advancement of PD and can be targeted for its effective treatment. Researchers have suggested that herbal plants exhibiting the anti-inflammatory and anti-oxidant properties are therefore beneficial to human health. Conventionally, Mucuna pruriens (Mp) seeds are used for maintaining male virility in India. Reportedly, Mp is used as a rejuvenator drug having neuroprotective property. Our study aimed to investigate effects of aqueous extract of Mp (100 mg/kgbwt) on neuroinflammation, orally administered to mice intoxicated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as well as the molecular mechanism involved in the progression of PD. In this study, we have observed significant behavioral abnormalities beside decreased antioxidant defense in MPTP intoxicated mice. We have also observed significant increase in inflammatory parameters like Glial Fibrillary Acidic Protein, Inducible Nitric Oxide Synthase, Intercellular Cell Adhesion Molecule, and Tumor Necrosis Factor alpha in substantia nigra pars compacta (SNpc) of parkinsonian mice, while Mp treatment has notably reduced these inflammatory parameters. Mp also inhibited the MPTP induced activation of NF-κB and promoted pAkt1 activity which further prevented the apoptosis of the dopaminergic neurons. Moreover, Mp exhibited significant antioxidant defense by inhibiting the lipid peroxidation and nitrite level, and by improving catalase activity and enhancing GSH level in nigrostriatal region of mouse brain. Mp also recovered the behavioral abnormalities in MPTP treated mice. Additionally, Mp treatment considerably increased the immunoreactivity of Tyrosine Hydroxylase and Dopamine Transporter in SNpc of parkinsonian mice. Our high performance liquid chromatography analysis of the Mp seed extract have shown L-DOPA, gallic acid, phytic acid, quercetin, and catechin equivalents as the major components which might cause neuroprotection in PD mice. Our result suggested that Mp extract treatment containing L-DOPA and a mixture of rich novel phytochemicals significantly alleviates the MPTP induced neurotoxicity by NF-κB and pAkt pathway. The findings observed thereby indicate that Mp extract have suggestively ameliorated MPTP induced neuroinflammation, restored the biochemical and behavioral abnormalities in PD mouse and thus provided a scientific basis for its traditional claim.
Journal of Chemical Neuroanatomy | 2017
Sachchida Nand Rai; Hareram Birla; Walia Zahra; Saumitra S. Singh; Surya Pratap Singh
Immune control is associated with nigrostriatal neuroprotection for Parkinsons disease (PD); though its direct cause and effect relationships have not yet been realized and modulating the immune system for therapeutic gain has been openly discussed. While the pathobiology of PD remains in study, neuroinflammation is thought to speed nigrostriatal degeneration. The neuroinflammatory cascade associated with PD begins with aggregation of misfolded or post-translationally modified α-synuclein (α-syn). Such aggregation results in neuronal cell death and the presence of chronically activated glia (microglia and astroglia), leading to the production of proinflammatory cytokines like tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), IL-6, and enzymes such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and cyclooxygenase-2 (COX-2). These changes in the glial phenotype can affect the central nervous system (CNS) microenvironment by producing a pro-inflammatory milieu that speeds PD pathogenesis. Mucuna pruriens (Mp) is the most popular drug in Ayurveda, the Indian system of medicine. Several reports have suggested that it possesses analgesic, anti-inflammatory, anti-neoplastic, anti-epileptic and anti-microbial activities. Mp contain L-DOPA and ursolic acid which has an anti-inflammatory property. There are very few literatures which show the immunomodulatory activity of Mp in PD, several researchers have tried to work on the immunomodulatory activity of Mp in some other diseases. The results of several studies show that Mp modulate the immune components like TNF-α, IL-6, IFN-λ, IL-1β, iNOS and IL-2 in the CNS. It also modulates the activity of the transcription factor NF-kB which plays an important role in the progression of the PD. Thus, by altering these cytokines or transcription factors, Mp protects or prevents the progression of PD. Thus in this review we try to explore the immunomodulatory activity of Mp in PD.
Frontiers in Pharmacology | 2018
Saumitra S. Singh; Sachchida Nand Rai; Hareram Birla; Walia Zahra; Gaurav Kumar; Mallikarjuna Rao Gedda; Neeraj Tiwari; Ranjana Patnaik; Rakesh K. Singh; S. P. Singh
Oxidative stress and neuroinflammation play a key role in dopaminergic (DA) neuronal degeneration, which results in the hindrance of normal ongoing biological processes in the case of Parkinson’s disease. As shown in several studies, on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration, different behavioral parameters have suggested motor impairment and damage of antioxidant defence. Thus, some specific biological molecules found in medicinal plants can be used to inhibit the DA neuronal degeneration through their antioxidant and anti-inflammatory activities. With this objective, we studied chlorogenic acid (CGA), a naturally occurring polyphenolic compound, for its antioxidant and anti-inflammatory properties in MPTP-intoxicated mice. We observed significant reoccurrence of motor coordination and antioxidant defence on CGA supplementation, which has been in contrast with MPTP-injected mice. Moreover, in the case of CGA-treated mice, the enhanced expression of tyrosine hydroxylase (TH) within the nigrostriatal region has supported its beneficial effect. The activation of glial cells and oxidative stress levels were also estimated using inducible nitric oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP) immunoreactivity within substantia nigra (SN) and striatum of MPTP-injected mice. Administration of CGA has prevented the neuroinflammation in SN by regulating the nuclear factor-κB expression in the MPTP-induced group. The significant release of certain pro-inflammatory mediators such as tumor necrosis factor-α and interleukin (IL)-1β has also been inhibited by CGA with the enhanced expression of anti-inflammatory cytokine IL-10. Moreover, reduced GFAP staining within the nigrostriatal region has supported the fact that CGA has significantly helped in the attenuation of astrocyte activation. Hence, our study has shown that CGA supplementation shows its therapeutic ability by reducing the oxidative stress and neuroinflammation in MPTP-intoxicated mice.
Frontiers in Aging Neuroscience | 2018
Sachchida Nand Rai; Walia Zahra; Hareram Birla; Saumitra S. Singh; S. P. Singh
Citation: Rai SN, Zahra W, Birla H, Singh SS and Singh SP (2018) Commentary: Mild endoplasmic reticulum stress ameliorates lpopolysaccharide-induced neuroinflammation and cognitive impairment via regulation of microglial polarization. Front. Aging Neurosci. 10:192. doi: 10.3389/fnagi.2018.00192 Commentary: Mild endoplasmic reticulum stress ameliorates lpopolysaccharide-induced neuroinflammation and cognitive impairment via regulation of microglial polarization
SOJ Neurology | 2015
Nidhi Singh; Sachchida Nand Rai; Divakar Singh; Surya Pratap Singh
Withania somnifera (Ashwagandha) is a very revered herb of the Indian Ayurvedic system of medicine. It is useful for treating various kinds of disease processes and especially used as a nervine tonic. Withania somnifera (Ws) contain a wide array of active components including withaferin A, withanone and other flavonoids exhibiting strong anti-oxidant properties. Many scientific studies on Ws were carried out previously that showed its anti-oxidative effect, synergistic effect with other medicinal herbs and its efficiency to increase catecholamines level and regulation of apoptotic processes. Furthermore, treatment of Parkinsonian mice models with Ws has shown neuroprotection of dopaminergic neurons in substantia nigra pars compacta region of mid-brain. The present review enlightens the crucial role of Indian Ginseng to curb neurodegenerative disorder such as Parkinson’s disease. Extensive studies are needed to prove its therapeutic efficacy in neuronal disorders.
Neurochemical Research | 2014
Jay Prakash; Shikha Chouhan; Satyndra Kumar Yadav; Susan Westfall; Sachchida Nand Rai; Surya Pratap Singh
Archive | 2018
Sachchida Nand Rai; Surya Pratap Singh
Frontiers in Synaptic Neuroscience | 2018
Sachchida Nand Rai; Hareram Birla; Walia Zahra; Saumitra S. Singh; Surya Pratap Singh