Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sachiko Ezoe is active.

Publication


Featured researches published by Sachiko Ezoe.


Molecular Cell | 2002

E2F1 and c-Myc Potentiate Apoptosis through Inhibition of NF-κB Activity that Facilitates MnSOD-Mediated ROS Elimination

Hirokazu Tanaka; Itaru Matsumura; Sachiko Ezoe; Yusuke Satoh; Toshiyuki Sakamaki; Chris Albanese; Takashi Machii; Richard G. Pestell; Yuzuru Kanakura

Overexpression of c-Myc or E2F1 sensitizes host cells to various types of apoptosis. Here, we found that overexpressed c-Myc or E2F1 induces accumulation of reactive oxygen species (ROS) and thereby enhances serum-deprived apoptosis in NIH3T3 and Saos-2. During serum deprivation, MnSOD mRNA was induced by NF-kappaB in mock-transfected NIH3T3, while this induction was inhibited in NIH3T3 overexpressing c-Myc or E2F1. In these clones, E2F1 inhibited NF-kappaB activity by binding to its subunit p65 in competition with a heterodimeric partner p50. In addition to overexpressed E2F1, endogenous E2F1 released from Rb was also found to inhibit NF-kappaB activity in a cell cycle-dependent manner by using E2F1(+/+) and E2F1(-/-) murine embryonic fibroblasts. These results indicate that E2F1 promotes apoptosis by inhibiting NF-kappaB activity.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Anti-CCR4 mAb selectively depletes effector-type FoxP3+CD4+ regulatory T cells, evoking antitumor immune responses in humans

Daisuke Sugiyama; Hiroyoshi Nishikawa; Yuka Maeda; Megumi Nishioka; Atsushi Tanemura; Ichiro Katayama; Sachiko Ezoe; Yuzuru Kanakura; Eiichi Sato; Yasuo Fukumori; Julia Karbach; Elke Jäger; Shimon Sakaguchi

Significance Regulatory T (Treg) cells expressing the transcription factor FOXP3 play a critical role in suppressing antitumor immune responses. Here we found that, compared with peripheral blood T cells, tumor-infiltrating T cells contained a higher frequency of effector Tregs, which are defined as FOXP3hi and CD45RA−, terminally differentiated, and most suppressive. Effector Treg cells, but not FOXP3lo and CD45RA+ naïve Treg cells, predominantly expressed C-C chemokine receptor 4 (CCR4) in both cancer tissues and peripheral blood. In vivo or in vitro anti-CCR4 mAb treatment selectively depleted effector Treg cells and efficiently induced tumor-antigen-specific CD4+ and CD8+ T cells. Thus, cell-depleting anti-CCR4 mAb therapy is instrumental for evoking and enhancing tumor immunity in humans via selectively removing effector-type FOXP3+ Treg cells. CD4+ Treg cells expressing the transcription factor FOXP3 (forkhead box P3) are abundant in tumor tissues and appear to hinder the induction of effective antitumor immunity. A substantial number of T cells, including Treg cells, in tumor tissues and peripheral blood express C-C chemokine receptor 4 (CCR4). Here we show that CCR4 was specifically expressed by a subset of terminally differentiated and most suppressive CD45RA−FOXP3hiCD4+ Treg cells [designated effector Treg (eTreg) cells], but not by CD45RA+FOXP3loCD4+ naive Treg cells, in peripheral blood of healthy individuals and cancer patients. In melanoma tissues, CCR4+ eTreg cells were predominant among tumor-infiltrating FOXP3+ T cells and much higher in frequency compared with those in peripheral blood. With peripheral blood lymphocytes from healthy individuals and melanoma patients, ex vivo depletion of CCR4+ T cells and subsequent in vitro stimulation of the depleted cell population with the cancer/testis antigen NY-ESO-1 efficiently induced NY-ESO-1–specific CD4+ T cells. Nondepletion failed in the induction. The magnitude of the responses was comparable with total removal of FOXP3+ Treg cells by CD25+ T-cell depletion. CCR4+ T-cell depletion also augmented in vitro induction of NY-ESO-1–specific CD8+ T cells in melanoma patients. Furthermore, in vivo administration of anti-CCR4 mAb markedly reduced the eTreg-cell fraction and augmented NY-ESO-1–specific CD8+ T-cell responses in an adult T-cell leukemia-lymphoma patient whose leukemic cells expressed NY-ESO-1. Collectively, these findings indicate that anti-CCR4 mAb treatment is instrumental for evoking and augmenting antitumor immunity in cancer patients by selectively depleting eTreg cells.


British Journal of Haematology | 2004

Suppressor of cytokine signalling-1 gene silencing in acute myeloid leukaemia and human haematopoietic cell lines.

Dai Watanabe; Sachiko Ezoe; Minoru Fujimoto; Akihiro Kimura; Yoshiyuki Saito; Hisaki Nagai; Isao Tachibana; Itaru Matsumura; Toshio Tanaka; Hirokazu Kanegane; Toshio Miyawaki; Mitsuru Emi; Yuzuru Kanakura; Ichiro Kawase; Tetsuji Naka; Tadamitsu Kishimoto

The aim of this study was to investigate whether the suppressor of cytokine signalling (SOCS)‐1 can act as a tumour suppressor when functioning as a negative regulator of the Janus family tyrosine kinases (JAKs), which have been reported to play important roles in leukaemogenesis. For this purpose, we carried out molecular analysis of the SOCS‐1 gene in human acute myeloid leukaemia (AML) and human haematopoietic cell lines. Sequencing alterations in the coding region were found in two of 90 primary AML samples and one of 17 cell lines. Hypermethylation of the SOCS‐1 gene was also observed in 72% of primary cases and 52% of cell lines and aberrant methylation strongly correlated with reduced expression. Transfection of SOCS‐1 into Jurkat cells harbouring the mutation and methylation suppressed cell growth at a low serum concentration. These findings indicate that SOCS‐1 is frequently silenced in haematopoietic malignancies, mainly as a result of hypermethylation, and suggest that SOCS‐1 may be able to function as a tumour suppressor.


Cell Cycle | 2004

Cell Cycle Regulation in Hematopoietic Stem/Progenitor Cells

Sachiko Ezoe; Itaru Matsumura; Yusuke Satoh; Hirokazu Tanaka; Yuzuru Kanakura

Hematopoietic stem cells (HSCs) are characterized by pluripotentiality and a capacity for self-renewal. In order to both maintain a supply of mature blood cells and not to exhaust HSCs throughout the lifespan of the organism, most HSCs remain quiescent and only a limited number enter the cell cycle. In HSCs, the cell cycle is crucially regulated by external factors such as cytokines and interactions with stromal cells and the extracellular matrix (ECM) in the bone marrow (BM) microenvironment. In addition, intrinsic transcription factors expressed in HSCs, including c-Myb, GATA-2, HOX family proteins, and Bmi-1, also control their growth through their effect on gene transcription. In terms of the particular roles in regulation of the cell-cycle, p21WAF1 (p21) and p27KIP1 (p27) were shown to maintain the quiescence of HSCs and of progenitor cells,


International Journal of Environmental Research and Public Health | 2012

Secondary leukemia associated with the anti-cancer agent, etoposide, a topoisomerase II inhibitor.

Sachiko Ezoe

Etoposide is an anticancer agent, which is successfully and extensively used in treatments for various types of cancers in children and adults. However, due to the increases in survival and overall cure rate of cancer patients, interest has arisen on the potential risk of this agent for therapy-related secondary leukemia. Topoisomerase II inhibitors, including etoposide and teniposide, frequently cause rearrangements involving the mixed lineage leukemia (MLL) gene on chromosome 11q23, which is associated with secondary leukemia. The prognosis is extremely poor for leukemias associated with rearrangements in the MLL gene, including etoposide-related secondary leukemias. It is of great importance to gain precise knowledge of the clinical aspects of these diseases and the mechanism underlying the leukemogenesis induced by this agent to ensure correct assessments of current and future therapy strategies. Here, I will review current knowledge regarding the clinical aspects of etoposide-related secondary leukemia, some probable mechanisms, and strategies for treating etoposide-induced leukemia.


Journal of Biological Chemistry | 2003

Reciprocal Inhibition between MyoD and STAT3 in the Regulation of Growth and Differentiation of Myoblasts

Yoshihisa Kataoka; Itaru Matsumura; Sachiko Ezoe; Soichi Nakata; Eri Takigawa; Yusuke Sato; Akira Kawasaki; Takashi Yokota; Koichi Nakajima; Armando Felsani; Yuzuru Kanakura

The development of myoblasts is regulated by various growth factors as well as by intrinsic muscle-specific transcriptional factors. In this study, we analyzed the roles for STAT3 in the growth and differentiation of myoblasts in terms of cell cycle regulation and interaction with MyoD using C2C12 cells. Here we found that STAT3 inhibited myogenic differentiation induced by low serum or MyoD as efficiently as the Ras/mitogen-activated protein kinase cascade. As for this mechanism, we found that STAT3 not only promoted cell cycle progression through the induction of c-myc but also inhibited MyoD activities through direct interaction. STAT3 inhibited not only DNA binding activities of MyoD but also its transcriptional activities. However, the inhibited transcriptional activities were restored by the supplement of p300/CBP and PCAF, suggesting that STAT3 might deprive MyoD of these transcriptional cofactors. In addition, we found that MyoD inhibited DNA binding activities of STAT3, thereby inhibiting STAT3-dependent cell growth and survival of Ba/F3 cells. These results suggest that the development of muscle cells is regulated by the coordination of cytokine signals and intrinsic transcription factors.


Journal of Biological Chemistry | 2008

AML1/RUNX1 Works as a Negative Regulator of c-Mpl in Hematopoietic Stem Cells

Yusuke Satoh; Itaru Matsumura; Hirokazu Tanaka; Sachiko Ezoe; Kentaro Fukushima; Masahiro Tokunaga; Masato Yasumi; Hirohiko Shibayama; Masao Mizuki; Takumi Era; Tsukasa Okuda; Yuzuru Kanakura

In this study, we analyzed the roles for AML1/RUNX1 in the regulation of the c-mpl promoter. Wild-type AML1 activated the c-mpl promoter through the proximal AML-binding site in luciferase assays using 293T and HeLa cells. In accord with this result, electrophoretic mobility shift assay and chromatin immunoprecipitation assays demonstrated that AML1 bound to this site. Next, we analyzed the function of AML1 using a mutant of AML1 lacking the C terminus (AML1dC), which was originally found in a patient with myelodysplastic syndromes. AML1dC dominant-negatively suppressed transcriptional activity of wild-type AML1. However, unexpectedly, AML1dC-transduced murine c-Kit+Sca1+Lineage- cells expressed c-mpl mRNA and c-Mpl protein more abundantly than mock-transduced cells, which led to the enhanced thrombopoietin-mediated proliferation. Moreover, when AML1dC was induced to express during the development of hematopoietic cells from embryonic stem (ES) cells, AML1dC augmented the c-Mpl expression on hematopoietic stem/progenitor cells. Furthermore, we found that early hematopoietic cells that derived from AML1+/- ES cells expressed c-Mpl more intensely than those that developed from wild-type ES cells. In contrast, AML1dC hardly affected c-Mpl expression and maturation of megakaryocytes. As for the mechanism of the different roles of AML1 in the regulation of the c-mpl promoter, we found that AML1 forms a complex with a transcription repressor mSin3A on the c-mpl promoter in hematopoietic stem/progenitor cells, although it forms a complex with a transcription activator p300 on the same promoter in megakaryocytic cells. Together, these data indicate that AML1 can regulate the c-mpl promoter both positively and negatively by changing the binding partner according to cell types.


Journal of Biological Chemistry | 2004

NF-κB Family Proteins Participate in Multiple Steps of Hematopoiesis through Elimination of Reactive Oxygen Species

Soichi Nakata; Itaru Matsumura; Hirokazu Tanaka; Sachiko Ezoe; Yusuke Satoh; Jun Ishikawa; Takumi Era; Yuzuru Kanakura

To examine the roles for NF-κB family proteins in hematopoiesis, we first expressed dominant negative Rel/NF-κB(IκBSR) in a factor-dependent cell line, Ba/F3. Although IκBSR neither affected thrombopoietin-dependent nor gp130-mediated growth, it suppressed interleukin-3- and erythropoietin-dependent growth at low concentrations. In addition, IκBSR enhanced factor-deprived apoptosis through the accumulation of reactive oxygen species (ROS). When expressed in normal hematopoietic stem/progenitor cells, IκBSR induced apoptosis even in the presence of appropriate cytokines by accumulating ROS. We also expressed IκBSR in an inducible fashion at various stages of hematopoiesis using the OP9 system, in which hematopoietic cells are induced to develop from embryonic stem cells. When IκBSR was expressed at the stage of Flk-1+ cells (putative hemangioblasts), IκBSR inhibited the development of primitive hematopoietic progenitor cells by inducing apoptosis through the ROS accumulation. Furthermore, when IκBSR was expressed after the development of hematopoietic progenitor cells, it inhibited their terminal differentiation toward erythrocytes, megakaryocytes, and granulocytes by inducing apoptosis through the ROS accumulation. These results indicate that NF-κB is required for preventing apoptosis at multiple steps of hematopoiesis by eliminating ROS.


Biochemical and Biophysical Research Communications | 2012

NAD-dependent histone deacetylase, SIRT1, plays essential roles in the maintenance of hematopoietic stem cells.

Keiko Matsui; Sachiko Ezoe; Kenji Oritani; Masaru Shibata; Masahiro Tokunaga; Natsuko Fujita; Akira Tanimura; Takao Sudo; Hirokazu Tanaka; Michael W. McBurney; Itaru Matsumura; Yuzuru Kanakura

Sir2 has been shown to be essential for transcriptional silencing and longevity provided by calorie restriction in Saccharomyces cerevisiae and Caenorhabditis elegans. In this study, we investigated the role for its mammalian homologue, SIRT1, in hematopoietic cells. SIRT1 inhibitor, nicotinamide (NA), promoted and its activator, resveratrol, inhibited the differentiation of murine bone marrow c-Kit(high)Sca-1(+)Lineage(-) (KSL) cells during the culture system ex vivo. To further clarify the roles of SIRT1 in hematopoietic cells, we isolated KSL cells from fetal liver of SIRT1 knockout (KO) mice and cultured them for 5days, because SIRT1 KO mice die shortly after the delivery. In agreement with the results from the experiments using NA and resveratrol, KSL cells isolated from SIRT1 KO mice more apparently differentiated and lost the KSL phenotype than those from wild-type (WT) mice. Furthermore, in each of colony assay, replating assay, or serial transplantation assay, SIRT1 KO KSL cells lost earlier the characteristics of stem cells than WT KSL cells. In addition, we found that SIRT1 maintains prematurity of hematopoietic cells through ROS elimination, FOXO activation, and p53 inhibition. These results suggest that SIRT1 suppresses differentiation of hematopoietic stem/progenitor cells and contributes to the maintenance of stem cell pool.


Surgery Today | 2009

Combined autologous cellular cardiomyoplasty using skeletal myoblasts and bone marrow cells for human ischemic cardiomyopathy with left ventricular assist system implantation: Report of a case

Shigeru Miyagawa; Goro Matsumiya; Toshihiro Funatsu; Masao Yoshitatsu; Naozumi Sekiya; Shinya Fukui; Takaya Hoashi; Masatsugu Hori; Hideki Yoshikawa; Yuzuru Kanakura; Jun Ishikawa; Katsuyuki Aozasa; Naomasa Kawaguchi; Nariaki Matsuura; Akira Myoui; Akifumi Matsuyama; Sachiko Ezoe; Hidehiro Iida; Hikaru Matsuda; Yoshiki Sawa

Myocardial regeneration therapy shows great promise as a treatment for heart failure. We recently introduced combined autologous cellular cardiomyoplasty with skeletal myoblasts and bone marrow cells as a treatment for human ischemic cardiomyopathy. We report the results of our first clinical trial of this technique, used to treat a patient with severe heart failure caused by ischemic cardiomyopathy who was being managed with a left ventricular assist system (LVAS). After combined cell transplantation, the patient showed signs of improved cardiac performance and angiogenesis, and reduced fibrosis.

Collaboration


Dive into the Sachiko Ezoe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takafumi Yokota

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge