Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sachiko Isobe is active.

Publication


Featured researches published by Sachiko Isobe.


DNA Research | 2011

Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L.

Shusei Sato; Hideki Hirakawa; Sachiko Isobe; Eigo Fukai; Akiko Watanabe; Midori Kato; Kumiko Kawashima; Chiharu Minami; Akiko Muraki; Naomi Nakazaki; Chika Takahashi; Shinobu Nakayama; Yoshie Kishida; Mitsuyo Kohara; Manabu Yamada; Hisano Tsuruoka; Shigemi Sasamoto; Satoshi Tabata; Tomoyuki Aizu; Atsushi Toyoda; Tadasu Shin-I; Yohei Minakuchi; Yuji Kohara; Asao Fujiyama; Suguru Tsuchimoto; Shin-ichiro Kajiyama; Eri Makigano; Nobuko Ohmido; Nakako Shibagaki; Joyce Cartagena

The whole genome of Jatropha curcas was sequenced, using a combination of the conventional Sanger method and new-generation multiplex sequencing methods. Total length of the non-redundant sequences thus obtained was 285 858 490 bp consisting of 120 586 contigs and 29 831 singlets. They accounted for ∼95% of the gene-containing regions with the average G + C content was 34.3%. A total of 40 929 complete and partial structures of protein encoding genes have been deduced. Comparison with genes of other plant species indicated that 1529 (4%) of the putative protein-encoding genes are specific to the Euphorbiaceae family. A high degree of microsynteny was observed with the genome of castor bean and, to a lesser extent, with those of soybean and Arabidopsis thaliana. In parallel with genome sequencing, cDNAs derived from leaf and callus tissues were subjected to pyrosequencing, and a total of 21 225 unigene data have been generated. Polymorphism analysis using microsatellite markers developed from the genomic sequence data obtained was performed with 12 J. curcas lines collected from various parts of the world to estimate their genetic diversity. The genomic sequence and accompanying information presented here are expected to serve as valuable resources for the acceleration of fundamental and applied research with J. curcas, especially in the fields of environment-related research such as biofuel production. Further information on the genomic sequences and DNA markers is available at http://www.kazusa.or.jp/jatropha/.


Nature Genetics | 2016

The genome sequences of Arachis duranensis and Arachis ipaensis , the diploid ancestors of cultivated peanut

David J. Bertioli; Steven B. Cannon; Lutz Froenicke; Guodong Huang; Andrew D. Farmer; Ethalinda K. S. Cannon; Xin Liu; Dongying Gao; Josh Clevenger; Sudhansu Dash; Longhui Ren; Márcio C. Moretzsohn; Kenta Shirasawa; Wei Huang; Bruna Vidigal; Brian Abernathy; Ye Chu; Chad E. Niederhuth; Pooja E. Umale; Ana Claudia Guerra Araujo; Alexander Kozik; Kyung Do Kim; Mark D. Burow; Rajeev K. Varshney; Xingjun Wang; Xinyou Zhang; Noelle A. Barkley; Patricia M. Guimarães; Sachiko Isobe; Baozhu Guo

Cultivated peanut (Arachis hypogaea) is an allotetraploid with closely related subgenomes of a total size of ∼2.7 Gb. This makes the assembly of chromosomal pseudomolecules very challenging. As a foundation to understanding the genome of cultivated peanut, we report the genome sequences of its diploid ancestors (Arachis duranensis and Arachis ipaensis). We show that these genomes are similar to cultivated peanuts A and B subgenomes and use them to identify candidate disease resistance genes, to guide tetraploid transcript assemblies and to detect genetic exchange between cultivated peanuts subgenomes. On the basis of remarkably high DNA identity of the A. ipaensis genome and the B subgenome of cultivated peanut and biogeographic evidence, we conclude that A. ipaensis may be a direct descendant of the same population that contributed the B subgenome to cultivated peanut.


Nature Communications | 2014

Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing

Xinpeng Qi; Man-Wah Li; Min Xie; Xin Liu; Meng Ni; Guihua Shao; Chi Song; Aldrin Kay-Yuen Yim; Ye Tao; Fuk-Ling Wong; Sachiko Isobe; Chi-Fai Wong; Kwong-Sen Wong; Chunyan Xu; Chunqing Li; Ying Wang; Rui Guan; Fengming Sun; Guangyi Fan; Zhixia Xiao; Feng Zhou; Tsui-Hung Phang; Xuan Liu; Suk-Wah Tong; Ting-Fung Chan; Siu-Ming Yiu; Satoshi Tabata; Jian Wang; Xun Xu; Hon-Ming Lam

Using a whole-genome-sequencing approach to explore germplasm resources can serve as an important strategy for crop improvement, especially in investigating wild accessions that may contain useful genetic resources that have been lost during the domestication process. Here we sequence and assemble a draft genome of wild soybean and construct a recombinant inbred population for genotyping-by-sequencing and phenotypic analyses to identify multiple QTLs relevant to traits of interest in agriculture. We use a combination of de novo sequencing data from this work and our previous germplasm re-sequencing data to identify a novel ion transporter gene, GmCHX1, and relate its sequence alterations to salt tolerance. Rapid gain-of-function tests show the protective effects of GmCHX1 towards salt stress. This combination of whole-genome de novo sequencing, high-density-marker QTL mapping by re-sequencing and functional analyses can serve as an effective strategy to unveil novel genomic information in wild soybean to facilitate crop improvement.


DNA Research | 2007

Characterization of the Soybean Genome Using EST-derived Microsatellite Markers

Hiroshi Hisano; Shusei Sato; Sachiko Isobe; Shigemi Sasamoto; Tsuyuko Wada; Ai Matsuno; Tsunakazu Fujishiro; Manabu Yamada; Shinobu Nakayama; Yasukazu Nakamura; Satoshi Watanabe; Kyuya Harada; Satoshi Tabata

Abstract We generated a high-density genetic linkage map of soybean using expressed sequence tag (EST)-derived microsatellite markers. A total of 6920 primer pairs (10.9%) were designed to amplify simple sequence repeats (SSRs) from 63 676 publicly available non-redundant soybean ESTs. The polymorphism of two parent plants, the Japanese cultivar ‘Misuzudaizu’ and the Chinese line ‘Moshidou Gong 503’, were examined using 10% polyacrylamide gel electrophoresis. Primer pairs showing polymorphism were then used for genotyping 94 recombinant inbred lines (RILs) derived from a cross between the parents. In addition to previously reported markers, 680 EST-derived microsatellite markers were selected and subjected to linkage analysis. As a result, 935 marker loci were mapped successfully onto 20 linkage groups, which totaled 2700.3 cM in length; 693 loci were detected using the 668 EST-derived microsatellite markers developed in this study, the other 242 loci were detected with 105 RFLP markers, 136 genome-derived microsatellite markers, and one phenotypic marker. We examined allelic variation among 23 soybean cultivars/lines and a wild soybean line using 668 mapped EST-derived microsatellite markers (corresponding to 686 marker loci), in order to determine the transferability of the markers among soybean germplasms. A limited degree of macrosynteny was observed at the segmental level between the genomes of soybean and the model legume Lotus japonicus, which suggests that considerable genome shuffling occurred after separation of the species and during establishment of the paleopolyploid soybean genome.


DNA Research | 2014

Dissection of the Octoploid Strawberry Genome by Deep Sequencing of the Genomes of Fragaria Species

Hideki Hirakawa; Kenta Shirasawa; Shunichi Kosugi; Kosuke Tashiro; Shinobu Nakayama; Manabu Yamada; Mistuyo Kohara; Akiko Watanabe; Yoshie Kishida; Tsunakazu Fujishiro; Hisano Tsuruoka; Chiharu Minami; Shigemi Sasamoto; Midori Kato; Keiko Nanri; Akiko Komaki; Tomohiro Yanagi; Qin Guoxin; Fumi Maeda; Masami Ishikawa; Shusei Sato; Satoshi Tabata; Sachiko Isobe

Cultivated strawberry (Fragaria x ananassa) is octoploid and shows allogamous behaviour. The present study aims at dissecting this octoploid genome through comparison with its wild relatives, F. iinumae, F. nipponica, F. nubicola, and F. orientalis by de novo whole-genome sequencing on an Illumina and Roche 454 platforms. The total length of the assembled Illumina genome sequences obtained was 698 Mb for F. x ananassa, and ∼200 Mb each for the four wild species. Subsequently, a virtual reference genome termed FANhybrid_r1.2 was constructed by integrating the sequences of the four homoeologous subgenomes of F. x ananassa, from which heterozygous regions in the Roche 454 and Illumina genome sequences were eliminated. The total length of FANhybrid_r1.2 thus created was 173.2 Mb with the N50 length of 5137 bp. The Illumina-assembled genome sequences of F. x ananassa and the four wild species were then mapped onto the reference genome, along with the previously published F. vesca genome sequence to establish the subgenomic structure of F. x ananassa. The strategy adopted in this study has turned out to be successful in dissecting the genome of octoploid F. x ananassa and appears promising when applied to the analysis of other polyploid plant species.


DNA Research | 2013

Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes.

Kenta Shirasawa; David J. Bertioli; Rajeev K. Varshney; Márcio C. Moretzsohn; Soraya C. M. Leal-Bertioli; Mahendar Thudi; Manish K. Pandey; Jean-François Rami; Daniel Foncéka; M. V. C. Gowda; Hongde Qin; Baozhu Guo; Yanbin Hong; Xuanqiang Liang; Hideki Hirakawa; Satoshi Tabata; Sachiko Isobe

The complex, tetraploid genome structure of peanut (Arachis hypogaea) has obstructed advances in genetics and genomics in the species. The aim of this study is to understand the genome structure of Arachis by developing a high-density integrated consensus map. Three recombinant inbred line populations derived from crosses between the A genome diploid species, Arachis duranensis and Arachis stenosperma; the B genome diploid species, Arachis ipaënsis and Arachis magna; and between the AB genome tetraploids, A. hypogaea and an artificial amphidiploid (A. ipaënsis × A. duranensis)4×, were used to construct genetic linkage maps: 10 linkage groups (LGs) of 544 cM with 597 loci for the A genome; 10 LGs of 461 cM with 798 loci for the B genome; and 20 LGs of 1442 cM with 1469 loci for the AB genome. The resultant maps plus 13 published maps were integrated into a consensus map covering 2651 cM with 3693 marker loci which was anchored to 20 consensus LGs corresponding to the A and B genomes. The comparative genomics with genome sequences of Cajanus cajan, Glycine max, Lotus japonicus, and Medicago truncatula revealed that the Arachis genome has segmented synteny relationship to the other legumes. The comparative maps in legumes, integrated tetraploid consensus maps, and genome-specific diploid maps will increase the genetic and genomic understanding of Arachis and should facilitate molecular breeding.


DNA Research | 2010

SNP Discovery and Linkage Map Construction in Cultivated Tomato

Kenta Shirasawa; Sachiko Isobe; Hideki Hirakawa; Erika Asamizu; Hiroyuki Fukuoka; Daniel Just; Shigemi Sasamoto; Tsunakazu Fujishiro; Yoshie Kishida; Mitsuyo Kohara; Hisano Tsuruoka; Tsuyuko Wada; Yasukazu Nakamura; Shusei Sato; Satoshi Tabata

Few intraspecific genetic linkage maps have been reported for cultivated tomato, mainly because genetic diversity within Solanum lycopersicum is much less than that between tomato species. Single nucleotide polymorphisms (SNPs), the most abundant source of genomic variation, are the most promising source of polymorphisms for the construction of linkage maps for closely related intraspecific lines. In this study, we developed SNP markers based on expressed sequence tags for the construction of intraspecific linkage maps in tomato. Out of the 5607 SNP positions detected through in silico analysis, 1536 were selected for high-throughput genotyping of two mapping populations derived from crosses between ‘Micro-Tom’ and either ‘Ailsa Craig’ or ‘M82’. A total of 1137 markers, including 793 out of the 1338 successfully genotyped SNPs, along with 344 simple sequence repeat and intronic polymorphism markers, were mapped onto two linkage maps, which covered 1467.8 and 1422.7 cM, respectively. The SNP markers developed were then screened against cultivated tomato lines in order to estimate the transferability of these SNPs to other breeding materials. The molecular markers and linkage maps represent a milestone in the genomics and genetics, and are the first step toward molecular breeding of cultivated tomato. Information on the DNA markers, linkage maps, and SNP genotypes for these tomato lines is available at http://www.kazusa.or.jp/tomato/.


DNA Research | 2014

Draft genome sequence of eggplant (Solanum melongena L.): the representative solanum species indigenous to the old world.

Hideki Hirakawa; Kenta Shirasawa; Koji Miyatake; Tsukasa Nunome; Satomi Negoro; Akio Ohyama; Hirotaka Yamaguchi; Shusei Sato; Sachiko Isobe; Satoshi Tabata; Hiroyuki Fukuoka

Unlike other important Solanaceae crops such as tomato, potato, chili pepper, and tobacco, all of which originated in South America and are cultivated worldwide, eggplant (Solanum melongena L.) is indigenous to the Old World and in this respect it is phylogenetically unique. To broaden our knowledge of the genomic nature of solanaceous plants further, we dissected the eggplant genome and built a draft genome dataset with 33,873 scaffolds termed SME_r2.5.1 that covers 833.1 Mb, ca. 74% of the eggplant genome. Approximately 90% of the gene space was estimated to be covered by SME_r2.5.1 and 85,446 genes were predicted in the genome. Clustering analysis of the predicted genes of eggplant along with the genes of three other solanaceous plants as well as Arabidopsis thaliana revealed that, of the 35,000 clusters generated, 4,018 were exclusively composed of eggplant genes that would perhaps confer eggplant-specific traits. Between eggplant and tomato, 16,573 pairs of genes were deduced to be orthologous, and 9,489 eggplant scaffolds could be mapped onto the tomato genome. Furthermore, 56 conserved synteny blocks were identified between the two species. The detailed comparative analysis of the eggplant and tomato genomes will facilitate our understanding of the genomic architecture of solanaceous plants, which will contribute to cultivation and further utilization of these crops.


BMC Plant Biology | 2012

Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (Arachis hypogaea L.)

Hui Wang; R. Varma Penmetsa; Mei Yuan; Limin Gong; Yongli Zhao; Baozhu Guo; Andrew D. Farmer; Benjamin D. Rosen; Jinliang Gao; Sachiko Isobe; David J. Bertioli; Rajeev K. Varshney; Douglas R. Cook; Guohao He

BackgroundCultivated peanut (Arachis hypogaea L.) is an important crop worldwide, valued for its edible oil and digestible protein. It has a very narrow genetic base that may well derive from a relatively recent single polyploidization event. Accordingly molecular markers have low levels of polymorphism and the number of polymorphic molecular markers available for cultivated peanut is still limiting.ResultsHere, we report a large set of BAC-end sequences (BES), use them for developing SSR (BES-SSR) markers, and apply them in genetic linkage mapping. The majority of BESs had no detectable homology to known genes (49.5%) followed by sequences with similarity to known genes (44.3%), and miscellaneous sequences (6.2%) such as transposable element, retroelement, and organelle sequences. A total of 1,424 SSRs were identified from 36,435 BESs. Among these identified SSRs, dinucleotide (47.4%) and trinucleotide (37.1%) SSRs were predominant. The new set of 1,152 SSRs as well as about 4,000 published or unpublished SSRs were screened against two parents of a mapping population, generating 385 polymorphic loci. A genetic linkage map was constructed, consisting of 318 loci onto 21 linkage groups and covering a total of 1,674.4 cM, with an average distance of 5.3 cM between adjacent loci. Two markers related to resistance gene homologs (RGH) were mapped to two different groups, thus anchoring 1 RGH-BAC contig and 1 singleton.ConclusionsThe SSRs mined from BESs will be of use in further molecular analysis of the peanut genome, providing a novel set of markers, genetically anchoring BAC clones, and incorporating gene sequences into a linkage map. This will aid in the identification of markers linked to genes of interest and map-based cloning.


Molecular Breeding | 2012

Large-scale development of expressed sequence tag-derived simple sequence repeat markers and diversity analysis in Arachis spp.

Padmalatha Koilkonda; Shusei Sato; Satoshi Tabata; Kenta Shirasawa; Hideki Hirakawa; Hiroe Sakai; Shigemi Sasamoto; Akiko Watanabe; Tsuyuko Wada; Yoshie Kishida; Hisano Tsuruoka; Tsunakazu Fujishiro; Manabu Yamada; Mitsuyo Kohara; Shigeru Suzuki; Makoto Hasegawa; Hiroyuki Kiyoshima; Sachiko Isobe

Large-scale development of expressed sequence tag simple sequence repeat (EST-SSR) markers was performed in peanut (Arachis hypogaea L.) to obtain more informative genetic markers. A total of 10,102 potential non-redundant EST sequences, including 3,445 contigs and 6,657 singletons, were generated from cDNA libraries of the gynophore, roots, leaves and seedlings. A total of 3,187 primer pairs were designed on flanking regions of SSRs, some of which allowed one and two base mismatches. Among the 3,187 markers generated, 2,540 (80%) were trinucleotide repeats, 302 (9%) were dinucleotide repeats, and 345 (11%) were tetranucleotide repeats. Pre-polymorphic analyses of 24 Arachis accessions were performed using 10% polyacrylamide gels. A total of 1,571 EST-SSR markers showing clear polymorphisms were selected for further polymorphic analysis with a Fluoro-fragment Analyzer. The 16 Arachis accessions examined included cultivated peanut varieties as well as diploid species with the A or B genome. Altogether 1,281 (81.5%) of the 1,571 markers were polymorphic among the 16 accessions, and 366 (23.3%) were polymorphic among the 12 cultivated varieties. Diversity analysis was performed and the genotypes of all 16 Arachis accessions showed similarity coefficients ranging from 0.37 to 0.97.

Collaboration


Dive into the Sachiko Isobe's collaboration.

Top Co-Authors

Avatar

Satoshi Tabata

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tsunakazu Fujishiro

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Mitsuyo Kohara

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge