Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sachin Katyal is active.

Publication


Featured researches published by Sachin Katyal.


Nature | 2006

The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates

Ivan Ahel; Ulrich Rass; Sherif F. El-Khamisy; Sachin Katyal; Paula M. Clements; Peter J. McKinnon; Keith W. Caldecott; Stephen C. West

Ataxia oculomotor apraxia-1 (AOA1) is a neurological disorder caused by mutations in the gene (APTX) encoding aprataxin. Aprataxin is a member of the histidine triad (HIT) family of nucleotide hydrolases and transferases, and inactivating mutations are largely confined to this HIT domain. Aprataxin associates with the DNA repair proteins XRCC1 and XRCC4, which are partners of DNA ligase III and ligase IV, respectively, suggestive of a role in DNA repair. Consistent with this, APTX-defective cell lines are sensitive to agents that cause single-strand breaks and exhibit an increased incidence of induced chromosomal aberrations. It is not, however, known whether aprataxin has a direct or indirect role in DNA repair, or what the physiological substrate of aprataxin might be. Here we show, using purified aprataxin protein and extracts derived from either APTX-defective chicken DT40 cells or Aptx-/- mouse primary neural cells, that aprataxin resolves abortive DNA ligation intermediates. Specifically, aprataxin catalyses the nucleophilic release of adenylate groups covalently linked to 5′-phosphate termini at single-strand nicks and gaps, resulting in the production of 5′-phosphate termini that can be efficiently rejoined. These data indicate that neurological disorders associated with APTX mutations may be caused by the gradual accumulation of unrepaired DNA strand breaks resulting from abortive DNA ligation events.


PLOS Genetics | 2011

DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation.

Deniz Simsek; Erika Brunet; Sunnie Yan-Wai Wong; Sachin Katyal; Yankun Gao; Peter J. McKinnon; Jacqueline Lou; Lei Zhang; James Li; Edward J. Rebar; Philip D. Gregory; Michael C. Holmes; Maria Jasin

Nonhomologous end-joining (NHEJ) is the primary DNA repair pathway thought to underlie chromosomal translocations and other genomic rearrangements in somatic cells. The canonical NHEJ pathway, including DNA ligase IV (Lig4), suppresses genomic instability and chromosomal translocations, leading to the notion that a poorly defined, alternative NHEJ (alt-NHEJ) pathway generates these rearrangements. Here, we investigate the DNA ligase requirement of chromosomal translocation formation in mouse cells. Mammals have two other DNA ligases, Lig1 and Lig3, in addition to Lig4. As deletion of Lig3 results in cellular lethality due to its requirement in mitochondria, we used recently developed cell lines deficient in nuclear Lig3 but rescued for mitochondrial DNA ligase activity. Further, zinc finger endonucleases were used to generate DNA breaks at endogenous loci to induce translocations. Unlike with Lig4 deficiency, which causes an increase in translocation frequency, translocations are reduced in frequency in the absence of Lig3. Residual translocations in Lig3-deficient cells do not show a bias toward use of pre-existing microhomology at the breakpoint junctions, unlike either wild-type or Lig4-deficient cells, consistent with the notion that alt-NHEJ is impaired with Lig3 loss. By contrast, Lig1 depletion in otherwise wild-type cells does not reduce translocations or affect microhomology use. However, translocations are further reduced in Lig3-deficient cells upon Lig1 knockdown, suggesting the existence of two alt-NHEJ pathways, one that is biased toward microhomology use and requires Lig3 and a back-up pathway which does not depend on microhomology and utilizes Lig1.


The EMBO Journal | 2007

TDP1 facilitates chromosomal single-strand break repair in neurons and is neuroprotective in vivo.

Sachin Katyal; Sherif F. El-Khamisy; H. R. Russell; Yang Li; Limei Ju; Keith W. Caldecott; Peter J. McKinnon

Defective Tyrosyl‐DNA phosphodiesterase 1 (TDP1) can cause spinocerebellar ataxia with axonal neuropathy (SCAN1), a neurodegenerative syndrome associated with marked cerebellar atrophy and peripheral neuropathy. Although SCAN1 lymphoblastoid cells show pronounced defects in the repair of chromosomal single‐strand breaks (SSBs), it is unknown if this DNA repair activity is important for neurons or for preventing neurodegeneration. Therefore, we generated Tdp1−/− mice to assess the role of Tdp1 in the nervous system. Using both in vitro and in vivo assays, we found that cerebellar neurons or primary astrocytes derived from Tdp1−/− mice display an inability to rapidly repair DNA SSBs associated with Top1–DNA complexes or oxidative damage. Moreover, loss of Tdp1 resulted in age‐dependent and progressive cerebellar atrophy. Tdp1−/− mice treated with topotecan, a drug that increases levels of Top1–DNA complexes, also demonstrated significant loss of intestinal and hematopoietic progenitor cells. These data indicate that TDP1 is required for neural homeostasis, and reveal a widespread requisite for TDP1 function in response to acutely elevated levels of Top1‐associated DNA strand breaks.


Nature | 2011

DNA ligase III is critical for mtDNA integrity but not Xrcc1-mediated nuclear DNA repair

Yankun Gao; Sachin Katyal; Youngsoo Lee; Jingfeng Zhao; Jerold E. Rehg; H. R. Russell; Peter J. McKinnon

DNA replication and repair in mammalian cells involves three distinct DNA ligases: ligase I (Lig1), ligase III (Lig3) and ligase IV (Lig4). Lig3 is considered a key ligase during base excision repair because its stability depends upon its nuclear binding partner Xrcc1, a critical factor for this DNA repair pathway. Lig3 is also present in the mitochondria, where its role in mitochondrial DNA (mtDNA) maintenance is independent of Xrcc1 (ref. 4). However, the biological role of Lig3 is unclear as inactivation of murine Lig3 results in early embryonic lethality. Here we report that Lig3 is essential for mtDNA integrity but dispensable for nuclear DNA repair. Inactivation of Lig3 in the mouse nervous system resulted in mtDNA loss leading to profound mitochondrial dysfunction, disruption of cellular homeostasis and incapacitating ataxia. Similarly, inactivation of Lig3 in cardiac muscle resulted in mitochondrial dysfunction and defective heart-pump function leading to heart failure. However, Lig3 inactivation did not result in nuclear DNA repair deficiency, indicating essential DNA repair functions of Xrcc1 can occur in the absence of Lig3. Instead, we found that Lig1 was critical for DNA repair, but acted in a cooperative manner with Lig3. Additionally, Lig3 deficiency did not recapitulate the hallmark features of neural Xrcc1 inactivation such as DNA damage-induced cerebellar interneuron loss, further underscoring functional separation of these DNA repair factors. Therefore, our data reveal that the critical biological role of Lig3 is to maintain mtDNA integrity and not Xrcc1-dependent DNA repair.


Nature Neuroscience | 2009

The genesis of cerebellar interneurons and the prevention of neural DNA damage require XRCC1

Youngsoo Lee; Sachin Katyal; Yang Li; Sherif F. El-Khamisy; H. R. Russell; Keith W. Caldecott; Peter J. McKinnon

Defective responses to DNA single strand breaks underlie various neurodegenerative diseases. However, the exact role of this repair pathway during the development and maintenance of the nervous system is unclear. Using murine neural-specific inactivation of Xrcc1, a factor that is critical for the repair of DNA single strand breaks, we found a profound neuropathology that is characterized by the loss of cerebellar interneurons. This cell loss was linked to p53-dependent cell cycle arrest and occurred as interneuron progenitors commenced differentiation. Loss of Xrcc1 also led to the persistence of DNA strand breaks throughout the nervous system and abnormal hippocampal function. Collectively, these data detail the in vivo link between DNA single strand break repair and neurogenesis and highlight the diverse consequences of specific types of genotoxic stress in the nervous system.


Mechanisms of Ageing and Development | 2008

DNA strand breaks, neurodegeneration and aging in the brain

Sachin Katyal; Peter J. McKinnon

Defective responses to DNA single- or double-strand breaks can result in neurological disease, underscoring the critical importance of DNA repair for neural homeostasis. Human DNA repair-deficient syndromes are generally congenital, in which brain pathology reflects the consequences of developmentally incurred DNA damage. Although, it is unclear to what degree DNA strand-break repair defects in mature neural cells contributes to disease pathology. However, DNA single-strand breaks are a relatively common lesion which if not repaired can impact cells via interference with transcription. Thus, this lesion, and probably to a lesser extent DNA double-strand breaks, may be particularly relevant to aging in the neural cell population. In this review we will examine the consequences of defective DNA strand-break repair towards homeostasis in the brain. Further, we also consider the utility of mouse models as reagents to understand the connection between DNA strand breaks and aging in the brain.


Nature Neuroscience | 2014

Aberrant topoisomerase-1 DNA lesions are pathogenic in neurodegenerative genome instability syndromes

Sachin Katyal; Youngsoo Lee; Karin C. Nitiss; Susanna M. Downing; Yang Li; Mikio Shimada; Jingfeng Zhao; H. R. Russell; John H.J. Petrini; John L. Nitiss; Peter J. McKinnon

DNA damage is considered to be a prime factor in several spinocerebellar neurodegenerative diseases; however, the DNA lesions underpinning disease etiology are unknown. We observed the endogenous accumulation of pathogenic topoisomerase-1 (Top1)-DNA cleavage complexes (Top1ccs) in murine models of ataxia telangiectasia and spinocerebellar ataxia with axonal neuropathy 1. We found that the defective DNA damage response factors in these two diseases cooperatively modulated Top1cc turnover in a non-epistatic and ATM kinase–independent manner. Furthermore, coincident neural inactivation of ATM and DNA single-strand break repair factors, including tyrosyl-DNA phosphodiesterase-1 or XRCC1, resulted in increased Top1cc formation and excessive DNA damage and neurodevelopmental defects. Notably, direct Top1 poisoning to elevate Top1cc levels phenocopied the neuropathology of the mouse models described above. Our results identify a critical endogenous pathogenic lesion associated with neurodegenerative syndromes arising from DNA repair deficiency, indicating that genome integrity is important for preventing disease in the nervous system.


DNA Repair | 2009

Synergistic decrease of DNA single-strand break repair rates in mouse neural cells lacking both Tdp1 and aprataxin

Sherif F. El-Khamisy; Sachin Katyal; Poorvi Patel; Limei Ju; Peter J. McKinnon; Keith W. Caldecott

Ataxia oculomotor apraxia-1 (AOA1) is an autosomal recessive neurodegenerative disease that results from mutations of aprataxin (APTX). APTX associates with the DNA single- and double-strand break repair machinery and is able to remove AMP from 5′-termini at DNA strand breaks in vitro. However, attempts to establish a DNA strand break repair defect in APTX-defective cells have proved conflicting and unclear. We reasoned that this may reflect that DNA strand breaks with 5′-AMP represent only a minor subset of breaks induced in cells, and/or the availability of alternative mechanisms for removing AMP from 5′-termini. Here, we have attempted to increase the dependency of chromosomal single- and double-strand break repair on aprataxin activity by slowing the rate of repair of 3′-termini in aprataxin-defective neural cells, thereby increasing the likelihood that the 5′-termini at such breaks become adenylated and/or block alternative repair mechanisms. To do this, we generated a mouse model in which APTX is deleted together with tyrosyl DNA phosphodiesterase (TDP1), an enzyme that repairs 3′-termini at a subset of single-strand breaks (SSBs), including those with 3′-topoisomerase-1 (Top1) peptide. Notably, the global rate of repair of oxidative and alkylation-induced SSBs was significantly slower in Tdp1−/−/Aptx−/− double knockout quiescent mouse astrocytes compared with Tdp1−/− or Aptx−/− single knockouts. In contrast, camptothecin-induced Top1-SSBs accumulated to similar levels in Tdp1−/− and Tdp1−/−/Aptx−/− double knockout astrocytes. Finally, we failed to identify a measurable defect in double-strand break repair in Tdp1−/−, Aptx−/− or Tdp1−/−/Aptx−/− astrocytes. These data provide direct evidence for a requirement for aprataxin during chromosomal single-strand break repair in primary neural cells lacking Tdp1.


Molecular and Cellular Biology | 2009

Defective DNA Ligation during Short-Patch Single-Strand Break Repair in Ataxia Oculomotor Apraxia 1

John J. Reynolds; Sherif F. El-Khamisy; Sachin Katyal; Paula M. Clements; Peter J. McKinnon; Keith W. Caldecott

ABSTRACT Ataxia oculomotor apraxia 1 (AOA1) results from mutations in aprataxin, a component of DNA strand break repair that removes AMP from 5′ termini. Despite this, global rates of chromosomal strand break repair are normal in a variety of AOA1 and other aprataxin-defective cells. Here we show that short-patch single-strand break repair (SSBR) in AOA1 cell extracts bypasses the point of aprataxin action at oxidative breaks and stalls at the final step of DNA ligation, resulting in the accumulation of adenylated DNA nicks. Strikingly, this defect results from insufficient levels of nonadenylated DNA ligase, and short-patch SSBR can be restored in AOA1 extracts, independently of aprataxin, by the addition of recombinant DNA ligase. Since adenylated nicks are substrates for long-patch SSBR, we reasoned that this pathway might in part explain the apparent absence of a chromosomal SSBR defect in aprataxin-defective cells. Indeed, whereas chemical inhibition of long-patch repair did not affect SSBR rates in wild-type mouse neural astrocytes, it uncovered a significant defect in Aptx−/− neural astrocytes. These data demonstrate that aprataxin participates in chromosomal SSBR in vivo and suggest that short-patch SSBR arrests in AOA1 because of insufficient nonadenylated DNA ligase.


The EMBO Journal | 2012

ATR maintains select progenitors during nervous system development

Youngsoo Lee; Erin R.P. Shull; Pierre Olivier Frappart; Sachin Katyal; Vanessa Enriquez-Rios; Jingfeng Zhao; H. R. Russell; Eric J. Brown; Peter J. McKinnon

The ATR (ATM (ataxia telangiectasia mutated) and rad3‐related) checkpoint kinase is considered critical for signalling DNA replication stress and its dysfunction can lead to the neurodevelopmental disorder, ATR‐Seckel syndrome. To understand how ATR functions during neurogenesis, we conditionally deleted Atr broadly throughout the murine nervous system, or in a restricted manner in the dorsal telencephalon. Unexpectedly, in both scenarios, Atr loss impacted neurogenesis relatively late during neural development involving only certain progenitor populations. Whereas the Atr‐deficient embryonic cerebellar external germinal layer underwent p53‐ (and p16Ink4a/Arf)‐independent proliferation arrest, other brain regions suffered apoptosis that was partially p53 dependent. In contrast to other organs, in the nervous system, p53 loss did not worsen the outcome of Atr inactivation. Coincident inactivation of Atm also did not affect the phenotype after Atr deletion, supporting non‐overlapping physiological roles for these related DNA damage‐response kinases in the brain. Rather than an essential general role in preventing replication stress, our data indicate that ATR functions to monitor genomic integrity in a selective spatiotemporal manner during neurogenesis.

Collaboration


Dive into the Sachin Katyal's collaboration.

Top Co-Authors

Avatar

Peter J. McKinnon

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith W. Caldecott

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jingfeng Zhao

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge