Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sachio Shibata is active.

Publication


Featured researches published by Sachio Shibata.


Bioorganic & Medicinal Chemistry | 2012

Discovery of the investigational drug TAK-441, a pyrrolo[3,2-c]pyridine derivative, as a highly potent and orally active hedgehog signaling inhibitor: modification of the core skeleton for improved solubility.

Tomohiro Ohashi; Yuya Oguro; Toshio Tanaka; Zenyu Shiokawa; Yuta Tanaka; Sachio Shibata; Yoshihiko Sato; Hiroko Yamakawa; Harumi Hattori; Yukiko Yamamoto; Shigeru Kondo; Maki Miyamoto; Mitsuhiro Nishihara; Yoshimasa Ishimura; Hideaki Tojo; Atsuo Baba; Satoshi Sasaki

We recently reported the discovery of the novel pyrrolo[3,2-c]quinoline-4-one derivative 1 as a potent inhibitor of Hedgehog (Hh) pathway signaling. However, the PK evaluation of 1 at high dosage (100 mg/kg) revealed the C(max) value 3.63 μg/mL, likely due to poor solubility of this compound. Efforts to improve solubility by reducing the aromatic ring count of the core system led to N-methylpyrrolo[3,2-c]pyridine derivative 11. Further optimization of the 3-alkoxy group led to compound 11d with acceptable solubility and potent Hh inhibitory activity. Compound 11d suppressed transcription factor Gli1 mRNA expression in tumor-associated stromal tissue and inhibited tumor growth (treatment/control ratio, 3%) in a mouse medulloblastoma allograft model owing to the improved PK profile based on increased solubility. Compound 11d (TAK-441) is currently in clinical trials for the treatment of advanced solid tumors.


Bioorganic & Medicinal Chemistry | 2012

Discovery of pyrrolo[3,2-c]quinoline-4-one derivatives as novel hedgehog signaling inhibitors.

Tomohiro Ohashi; Yuya Oguro; Toshio Tanaka; Zenyu Shiokawa; Sachio Shibata; Yoshihiko Sato; Hiroko Yamakawa; Harumi Hattori; Yukiko Yamamoto; Shigeru Kondo; Maki Miyamoto; Hideaki Tojo; Atsuo Baba; Satoshi Sasaki

The Hedgehog (Hh) signaling pathway plays a significant role in the regulation of cell growth and differentiation during embryonic development. Since activation of the Hh signaling pathway is implicated in several types of human cancers, inhibitors of this pathway could be promising anticancer agents. Using high throughput screening, thieno[3,2-c]quinoline-4-one derivative 9a was identified as a compound of interest with potent in vitro activity but poor metabolic stability. Our efforts focused on enhancement of in vitro inhibitory activity and metabolic stability, including core ring conversion and side chain optimization. This led to the discovery of pyrrolo[3,2-c]quinoline-4-one derivative 12b, which has a structure distinct from previously reported Hh signaling inhibitors. Compound 12b suppressed stromal Gli1 mRNA expression in a murine model and demonstrated antitumor activity in a murine medulloblastoma allograft model.


Drug Metabolism and Disposition | 2013

Pharmacokinetic and Pharmacodynamic Modeling of Hedgehog Inhibitor TAK-441 for the Inhibition of Gli1 messenger RNA Expression and Antitumor Efficacy in Xenografted Tumor Model Mice

Akifumi Kogame; Yoshihiko Tagawa; Sachio Shibata; Hideaki Tojo; Maki Miyamoto; Kimio Tohyama; Takahiro Kondo; Shimoga R. Prakash; Wen Chyi Shyu; Satoru Asahi

6-Ethyl-N-[1-(hydroxyacetyl)piperidin-4-yl]-1-methyl-4-oxo-5-(2-oxo-2-phenylethyl)-3-(2,2,2-trifluoroethoxy)-4,5-dihydro-1H-pyrrolo[3,2-c]pyridine-2-carboxamide (TAK-441) is a potent, selective hedgehog signaling pathway inhibitor that binds to Smo and is being developed for the treatment of cancer. The objectives of these studies were to explore the possibility of establishing of a link between the pharmacokinetics of TAK-441 and the responses of Gli1 mRNA in tumor-associated stromal or skin cells and the antitumor effect of hedgehog inhibition. To this end, we built pharmacokinetic and pharmacodynamic models that describe the relationship of the concentrations of TAK-441 plasma to the responses of Gli1 mRNA in the tumor (target) and skin (surrogate) and to tumor growth inhibition in mice bearing xenografts of human pancreatic tumors (PAN-04). The responses of Gli1 mRNA and tumor growth were described by an indirect response model and an exponential tumor growth model, respectively. The IC50 values for Gli1 mRNA inhibition in the tumor and skin by TAK-441 were estimated to be 0.0457 and 0.113 μg/ml, respectively. The IC90 value for tumor growth inhibition was estimated to be 0.68 μg/ml. These results suggest that a >83% inhibition of Gli1 mRNA expression in the skin or a >94% inhibition of Gli1 mRNA expression in the tumor would be required to sufficiently inhibit (>90%) hedgehog-related tumor growth in the xenografted model mice. We conclude that Gli1 mRNA expression in the tumor and skin could be a useful biomarker for predicting the antitumor effect of hedgehog inhibitors


Cancer Research | 2011

Abstract 2823: TAK-441, a novel investigational small molecule hedgehog pathway inhibitor for use in cancer therapy

Hideaki Tojo; Sachio Shibata; Yoshihiko Satoh; Mihoko Kawamura; Masakazu Inazuka; Hiroko Yamakawa; Masahide Kashiwagi; Maki Miyamoto; Shigeru Kondo; Tomohiro Oohashi; Yuya Oguro; Satoshi Sasaki

Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL Dysregulation of hedgehog (Hh) signal, which is caused by Hh-ligand overexpression or patched1 (Ptch1) mutation, has been found to play an important role in tumorigenesis. TAK-441 is a potent and selective smoothened (Smo) antagonist that blocks Hh signaling. In the Gli-responsive promoter-luciferase (Gli-luc) reporter assay in NIH3T3/Gli-luc cells, TAK-441 inhibited Gli transcriptional activity with an IC50 of 4.4 nM. TAK-441 also inhibited expression of human Gli1 messenger mRNA with an IC50 of 1.9 nM in MRC5 human embryonic fibroblasts. In addition, TAK-441 inhibited binding of cyclopamine, a plant-derived well-known Smo inhibitor, to human Smo on 293T cells overexpressing human Smo with an IC50 of 8.6 nM. These data suggest that TAK-441 inhibits the Hh signaling pathway through its binding to Smo. Oral administration of TAK-441 (0.5, 1, 5, 25 mg/kg QD) in mice bearing a Ptch1 (+/-), p53(−/-) medulloblastoma allograft resulted in dose-dependent antitumor activity with concomitant reduction of Gli1 mRNA expression in the tumors. Complete remissions were observed in the 25 mg/kg QD dose cohort after two consecutive weeks of treatment. Significant (p≤0.025 by one-tailed Williams test) antitumor activity was also detected in sonic hedgehog expressing human primary pancreatic and ovarian cancer xenografts when dosed at 10 and 25 mg/kg QD for two weeks, and in a colon cancer xenograft when dosed at 6.25 and 25 mg/kg BID for three weeks. In these models, the expression of tumor-associated mouse stromal Gli1 mRNA was markedly decreased following TAK-441 treatment, suggesting that Hh signaling in these tumors was driven in a paracrine mode of action. The combination of TAK-441 and rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), demonstrated significantly better antitumor activity than either agent alone in human primary pancreatic cancer xenograft models (p≤0.05 by Students’ t-test). In addition, delayed tumor re-growth was observed in the TAK-441/rapamycin combination treatment group compared with the rapamycin single-agent treatment group after terminating treatment. As a result of these preclinical studies, TAK-441 has recently entered Phase I clinical studies in cancer patients. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr 2823. doi:10.1158/1538-7445.AM2011-2823


Biochemical and Biophysical Research Communications | 2017

Antitumor activity of a novel and orally available inhibitor of serine palmitoyltransferase.

Masahiro Yaguchi; Sachio Shibata; Yoshinori Satomi; Megumi Hirayama; Ryutaro Adachi; Yasutomi Asano; Takuto Kojima; Yasuhiro Hirata; Akio Mizutani; Atsushi Kiba; Yoji Sagiya

Metabolic reprogramming is an essential hallmark of neoplasia. Therefore, targeting cancer metabolism, including lipid synthesis, has attracted much interest in recent years. Serine palmitoyltransferase (SPT) plays a key role in the initial and rate-limiting step of de novo sphingolipid biosynthesis, and inhibiting SPT activity prevents the proliferation of certain cancer cells. Here, we identified a novel and orally available SPT inhibitor, compound-2. Compound-2 showed an anti-proliferative effect in several cancer cell models, reducing the levels of the sphingolipids ceramide and sphingomyelin. In the presence of compound-2, exogenously added S1P partially compensated the intracellular sphingolipid levels through the salvage pathway by partially rescuing compound-2-induced cytotoxicity. This suggested that the mechanism underlying the anti-proliferative effect of compound-2 involved the reduction of sphingolipid levels. Indeed, compound-2 promoted multinuclear formation with reduced endogenous sphingomyelin levels specifically in a compound-2-sensitive cell line, indicating that the effect was induced by sphingolipid reduction. Furthermore, compound-2 showed potent antitumor activity without causing significant body weight loss in the PL-21 acute myeloid leukemia mouse xenograft model. Therefore, SPT may be an attractive therapeutic anti-cancer drug target for which compound-2 may be a promising new drug.


Scientific Reports | 2017

CETSA quantitatively verifies in vivo target engagement of novel RIPK1 inhibitors in various biospecimens

Tsuyoshi Ishii; Takuro Okai; Misa Iwatani-Yoshihara; Manabu Mochizuki; Satoko Unno; Masako Kuno; Masato Yoshikawa; Sachio Shibata; Masanori Nakakariya; Takatoshi Yogo; Tomohiro Kawamoto

The proof of target engagement (TE) is a key element for evaluating potential investment in drug development. The cellular thermal shift assay (CETSA) is expected to facilitate direct measurement of intracellular TE at all stages of drug development. However, there have been no reports of applying this technology to comprehensive animal and clinical studies. This report demonstrates that CETSA can not only quantitatively evaluate the drug-TE in mouse peripheral blood, but also confirm TE in animal tissues exemplified by using the receptor interacting protein 1 kinase (RIPK1) lead compound we have developed. Our established semi-automated system allows evaluation of the structure-activity relationship using native RIPK1 in culture cell lines, and also enables estimation of drug occupancy ratio in mouse peripheral blood mononuclear cells. Moreover, optimized tissue homogenisation enables monitoring of the in vivo drug-TE in spleen and brain. Our results indicate that CETSA methodology will provide an efficient tool for preclinical and clinical drug development.


Bioorganic & Medicinal Chemistry | 2015

Synthesis and evaluation of hedgehog signaling inhibitor with novel core system.

Tomohiro Ohashi; Yuta Tanaka; Zenyu Shiokawa; Hiroshi Banno; Toshio Tanaka; Sachio Shibata; Yoshihiko Satoh; Hiroko Yamakawa; Yukiko Yamamoto; Harumi Hattori; Shigeru Kondo; Maki Miyamoto; Hideaki Tojo; Atsuo Baba; Satoshi Sasaki

As we previously reported, N-methylpyrrolo[3,2-c]pyridine derivatives 1 (TAK-441) was discovered as a clinical candidate of hedgehog (Hh) signaling inhibitor by modification of the upper part. We next focused on modification of the lower part including core skeletons to discover new Hh signaling inhibitors with novel core rings. Efforts to find novel chemotypes by using X-ray single crystal structure analysis led to some potent Hh signaling inhibitors (2c, 2d, 2e, 2f) with novel core ring systems, which had benzamide moiety at the 5-position as a key component for potent activity. The suppression of Gli1 expression with these new Hh signaling inhibitors were weaker than that of compound 1 (TAK-441) because of low pharmacokinetic property. We recognized again TAK-441 is a good compound as clinical candidate with good structural and pharmacokinetic advantages.


Bioorganic & Medicinal Chemistry | 2018

Discovery of novel serine palmitoyltransferase inhibitors as cancer therapeutic agents

Takuto Kojima; Yasutomi Asano; Osamu Kurasawa; Yasuhiro Hirata; Naoki Iwamura; Tzu-Tshin Wong; Bunnai Saito; Yuta Tanaka; Ryosuke Arai; Kazuko Yonemori; Yasufumi Miyamoto; Yoji Sagiya; Masahiro Yaguchi; Sachio Shibata; Akio Mizutani; Osamu Sano; Ryutaro Adachi; Yoshinori Satomi; Megumi Hirayama; Kazunobu Aoyama; Yuto Hiura; Atsushi Kiba; Shuji Kitamura; Shinichi Imamura

We pursued serine palmitoyltransferase (SPT) inhibitors as novel cancer therapeutic agents based on a correlation between SPT inhibition and growth suppression of cancer cells. High-throughput screening and medicinal chemistry efforts led to the identification of structurally diverse SPT inhibitors 4 and 5. Both compounds potently inhibited SPT enzyme and decreased intracellular ceramide content. In addition, they suppressed cell growth of human lung adenocarcinoma HCC4006 and acute promyelocytic leukemia PL-21, and displayed good pharmacokinetic profiles. Reduction of 3-ketodihydrosphingosine, the direct downstream product of SPT, was confirmed under in vivo settings after oral administration of compounds 4 and 5. Their anti-tumor efficacy was observed in a PL-21 xenograft mouse model. These results suggested that SPT inhibitors might have potential to be effective cancer therapeutics.


ACS Medicinal Chemistry Letters | 2017

Discovery of Novel 5-(Piperazine-1-carbonyl)pyridin-2(1H)-one Derivatives as Orally eIF4A3-Selective Inhibitors

Ryo Mizojiri; Daisuke Nakata; Yoshihiko Satoh; Daisuke Morishita; Sachio Shibata; Misa Iwatani-Yoshihara; Yohei Kosugi; Mai Kosaka; Junpei Takeda; Shigekazu Sasaki; Kazuaki Takami; Koichiro Fukuda; Masahiro Kamaura; Shinobu Sasaki; Ryosuke Arai; Douglas R. Cary; Yasuhiro Imaeda

Starting from our previous eIF4A3-selective inhibitor 1a, a novel series of (piperazine-1-carbonyl)pyridin-2(1H)-one derivatives was designed, synthesized, and evaluated for identification of orally bioavailable probe molecules. Compounds 1o and 1q showed improved physicochemical and ADMET profiles, while maintaining potent and subtype-selective eIF4A3 inhibitory potency. In accord with their promising PK profiles and results from initial in vivo PD studies, compounds 1o and 1q showed antitumor efficacy with T/C values of 54% and 29%, respectively, without severe body weight loss. Thus, our novel series of compounds represents promising probe molecules for the in vivo pharmacological study of selective eIF4A3 inhibition.


Biochemical and Biophysical Research Communications | 1999

Cloning and Expression of a Novel Lysophospholipase Which Structurally Resembles Lecithin Cholesterol Acyltransferase

Yoshio Taniyama; Sachio Shibata; Shunbun Kita; Kenichi Horikoshi; Hiromitsu Fuse; Hideo Shirafuji; Yasuhiro Sumino; Masahiko Fujino

Collaboration


Dive into the Sachio Shibata's collaboration.

Top Co-Authors

Avatar

Hideaki Tojo

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Hiromitsu Fuse

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Satoshi Sasaki

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Yoshio Taniyama

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Maki Miyamoto

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Hiroko Yamakawa

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Shigeru Kondo

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Yoshihiko Satoh

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Atsuo Baba

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Harumi Hattori

Takeda Pharmaceutical Company

View shared research outputs
Researchain Logo
Decentralizing Knowledge