Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sachiyo Funamoto is active.

Publication


Featured researches published by Sachiyo Funamoto.


Radiation Research | 2007

Solid Cancer Incidence in Atomic Bomb Survivors: 1958–1998

Dale L. Preston; Elaine Ron; Shoji Tokuoka; Sachiyo Funamoto; Nobuo Nishi; Midori Soda; Kiyohiko Mabuchi; Kazunori Kodama

Abstract Preston, D. L., Ron, E., Tokuoka, S., Funamoto, S., Nishi, N., Soda, M., Mabuchi, K. and Kodama, K. Solid Cancer Incidence in Atomic Bomb Survivors: 1958–1998. Radiat. Res. 168, 1–64 (2007). This is the second general report on radiation effects on the incidence of solid cancers (cancers other than malignancies of the blood or blood-forming organs) among members of the Life Span Study (LSS) cohort of Hiroshima and Nagasaki atomic bomb survivors. The analyses were based on 17,448 first primary cancers (including non-melanoma skin cancer) diagnosed from 1958 through 1998 among 105,427 cohort members with individual dose estimates who were alive and not known to have had cancer prior to 1958. Radiation-associated relative risks and excess rates were considered for all solid cancers as a group, for 19 specific cancer sites or groups of sites, and for five histology groups. Poisson regression methods were used to investigate the magnitude of the radiation-associated risks, the shape of the dose response, how these risks vary with gender, age at exposure, and attained age, and the evidence for inter-site variation in the levels and patterns of the excess risk. For all solid cancers as a group, it was estimated that about 850 (about 11%) of the cases among cohort members with colon doses in excess of 0.005 Gy were associated with atomic bomb radiation exposure. The data were consistent with a linear dose response over the 0- to 2-Gy range, while there was some flattening of the dose response at higher doses. Furthermore, there is a statistically significant dose response when analyses were limited to cohort members with doses of 0.15 Gy or less. The excess risks for all solid cancers as a group and many individual sites exhibit significant variation with gender, attained age, and age at exposure. It was estimated that, at age 70 after exposure at age 30, solid cancer rates increase by about 35% per Gy (90% CI 28%; 43%) for men and 58% per Gy (43%; 69%) for women. For all solid cancers as a group, the excess relative risk (ERR per Gy) decreases by about 17% per decade increase in age at exposure (90% CI 7%; 25%) after allowing for attained-age effects, while the ERR decreased in proportion to attained age to the power 1.65 (90% CI 2.1; 1.2) after allowing for age at exposure. Despite the decline in the ERR with attained age, excess absolute rates appeared to increase throughout the study period, providing further evidence that radiation-associated increases in cancer rates persist throughout life regardless of age at exposure. For all solid cancers as a group, women had somewhat higher excess absolute rates than men (F:M ratio 1.4; 90% CI 1.1; 1.8), but this difference disappears when the analysis was restricted to non-gender-specific cancers. Significant radiation-associated increases in risk were seen for most sites, including oral cavity, esophagus, stomach, colon, liver, lung, non-melanoma skin, breast, ovary, bladder, nervous system and thyroid. Although there was no indication of a statistically significant dose response for cancers of the pancreas, prostate and kidney, the excess relative risks for these sites were also consistent with that for all solid cancers as a group. Dose–response estimates for cancers of the rectum, gallbladder and uterus were not statistically significant, and there were suggestions that the risks for these sites may be lower than those for all solid cancers combined. However, there was emerging evidence from the present data that exposure as a child may increase risks of cancer of the body of the uterus. Elevated risks were seen for all of the five broadly classified histological groups considered, including squamous cell carcinoma, adenocarcinoma, other epithelial cancers, sarcomas and other non-epithelial cancers. Although the data were limited, there was a significant radiation-associated increase in the risk of cancer occurring in adolescence and young adulthood. In view of the persisting increase in solid cancer risks, the LSS should continue to provide important new information on radiation exposure and solid cancer risks for at least another 15 to 20 years.


Radiation Research | 2004

Effect of Recent Changes in Atomic Bomb Survivor Dosimetry on Cancer Mortality Risk Estimates

Dale L. Preston; Donald A. Pierce; Yukiko Shimizu; Harry M. Cullings; Shoichiro Fujita; Sachiyo Funamoto; Kazunori Kodama

Abstract Preston, D. L., Pierce, D. A., Shimizu, Y., Cullings, H. M., Fujita, S., Funamoto, S. and Kodama, K. Effect of Recent Changes in Atomic Bomb Survivor Dosimetry on Cancer Mortality Risk Estimates. Radiat. Res. 162, 377–389 (2004). The Radiation Effects Research Foundation has recently implemented a new dosimetry system, DS02, to replace the previous system, DS86. This paper assesses the effect of the change on risk estimates for radiation-related solid cancer and leukemia mortality. The changes in dose estimates were smaller than many had anticipated, with the primary systematic change being an increase of about 10% in γ-ray estimates for both cities. In particular, an anticipated large increase of the neutron component in Hiroshima for low-dose survivors did not materialize. However, DS02 improves on DS86 in many details, including the specifics of the radiation released by the bombs and the effects of shielding by structures and terrain. The data used here extend the last reported follow-up for solid cancers by 3 years, with a total of 10,085 deaths, and extends the follow-up for leukemia by 10 years, with a total of 296 deaths. For both solid cancer and leukemia, estimated age–time patterns and sex difference are virtually unchanged by the dosimetry revision. The estimates of solid-cancer radiation risk per sievert and the curvilinear dose response for leukemia are both decreased by about 8% by the dosimetry revision, due to the increase in the γ-ray dose estimates. The apparent shape of the dose response is virtually unchanged by the dosimetry revision, but for solid cancers, the additional 3 years of follow-up has some effect. In particular, there is for the first time a statistically significant upward curvature for solid cancer on the restricted dose range 0–2 Sv. However, the low-dose slope of a linear-quadratic fit to that dose range should probably not be relied on for risk estimation, since that is substantially smaller than the linear slopes on ranges 0–1 Sv, 0–0.5 Sv, and 0– 0.25 Sv. Although it was anticipated that the new dosimetry system might reduce some apparent dose overestimates for Nagasaki factory workers, this did not materialize, and factory workers have significantly lower risk estimates. Whether or not one makes allowance for this, there is no statistically significant city difference in the estimated cancer risk.


Journal of the National Cancer Institute | 2008

Solid Cancer Incidence in Atomic Bomb Survivors Exposed In Utero or as Young Children

Dale L. Preston; Harry M. Cullings; Akihiko Suyama; Sachiyo Funamoto; Nobuo Nishi; Midori Soda; Kiyohiko Mabuchi; Kazunori Kodama; Fumiyoshi Kasagi; Roy E. Shore

BACKGROUND In utero exposure to radiation is known to increase risks of childhood cancers, and childhood exposure is associated with increased risks of adult-onset cancers. However, little is known about whether in utero exposure to radiation increases risks of adult-onset cancers. METHODS Solid cancer incidence rates were examined among survivors of the atomic bombings of Hiroshima and Nagasaki who were in utero (n = 2452) or younger than 6 years (n = 15388) at the time of the bombings. Poisson regression was used to estimate and compare the levels and temporal patterns of the radiation-associated excess risks of first primary solid cancers among these survivors at ages 12-55. All statistical tests were two-sided. RESULTS There were 94 eligible cancers in the in utero group and 649 in the early childhood group. The excess relative risk (ERR) increased with dose for both in utero (age 50, ERR = 1.0 per Sv, 95% confidence interval [CI] = 0.2 to 2.3 per Sv) and early childhood (age 50, ERR = 1.7 per Sv, 95% CI = 1.1 to 2.5 Sv) exposures. The ERR declined (P = .046) with increasing attained age in the combined cohort. Excess absolute rates (EARs) increased markedly with attained age among those exposed in early childhood but exhibited little change in the in utero group. At age 50, the estimated EARs per 10,000 person-years per Sv were 6.8 (95% CI = <0 to 49) for those exposed in utero and 56 (95% CI = 36 to 79) for those exposed as young children. CONCLUSIONS Both the in utero and early childhood groups exhibited statistically significant dose-related increases in incidence rates of solid cancers. The apparent difference in EARs between the two groups suggests that lifetime risks following in utero exposure may be considerably lower than for early childhood exposure, but further follow-up is needed.


Radiation Research | 2013

The Incidence of Leukemia, Lymphoma and Multiple Myeloma among Atomic Bomb Survivors: 1950–2001

Wan-Ling Hsu; Dale L. Preston; Midori Soda; Hiromi Sugiyama; Sachiyo Funamoto; Kazunori Kodama; Akiro Kimura; Nanao Kamada; Hiroo Dohy; Masao Tomonaga; Masako Iwanaga; Yasushi Miyazaki; Harry M. Cullings; Akihiko Suyama; Kotaro Ozasa; Roy E. Shore; Kiyohiko Mabuchi

A marked increase in leukemia risks was the first and most striking late effect of radiation exposure seen among the Hiroshima and Nagasaki atomic bomb survivors. This article presents analyses of radiation effects on leukemia, lymphoma and multiple myeloma incidence in the Life Span Study cohort of atomic bomb survivors updated 14 years since the last comprehensive report on these malignancies. These analyses make use of tumor- and leukemia-registry based incidence data on 113,011 cohort members with 3.6 million person-years of follow-up from late 1950 through the end of 2001. In addition to a detailed analysis of the excess risk for all leukemias other than chronic lymphocytic leukemia or adult T-cell leukemia (neither of which appear to be radiation-related), we present results for the major hematopoietic malignancy types: acute lymphoblastic leukemia, chronic lymphocytic leukemia, acute myeloid leukemia, chronic myeloid leukemia, adult T-cell leukemia, Hodgkin and non-Hodgkin lymphoma and multiple myeloma. Poisson regression methods were used to characterize the shape of the radiation dose-response relationship and, to the extent the data allowed, to investigate variation in the excess risks with gender, attained age, exposure age and time since exposure. In contrast to the previous report that focused on describing excess absolute rates, we considered both excess absolute rate (EAR) and excess relative risk (ERR) models and found that ERR models can often provide equivalent and sometimes more parsimonious descriptions of the excess risk than EAR models. The leukemia results indicated that there was a nonlinear dose response for leukemias other than chronic lymphocytic leukemia or adult T-cell leukemia, which varied markedly with time and age at exposure, with much of the evidence for this nonlinearity arising from the acute myeloid leukemia risks. Although the leukemia excess risks generally declined with attained age or time since exposure, there was evidence that the radiation-associated excess leukemia risks, especially for acute myeloid leukemia, had persisted throughout the follow-up period out to 55 years after the bombings. As in earlier analyses, there was a weak suggestion of a radiation dose response for non-Hodgkin lymphoma among men, with no indication of such an effect among women. There was no evidence of radiation-associated excess risks for either Hodgkin lymphoma or multiple myeloma.


International Journal of Cancer | 2013

Long‐term trend of thyroid cancer risk among Japanese atomic‐bomb survivors: 60 years after exposure

Kyoji Furukawa; Dale L. Preston; Sachiyo Funamoto; Shuji Yonehara; Masahiro Ito; Shoji Tokuoka; Hiromi Sugiyama; Midori Soda; Kotaro Ozasa; Kiyohiko Mabuchi

Thyroid cancer risk following exposure to ionizing radiation in childhood and adolescence is a topic of public concern. To characterize the long‐term temporal trend and age‐at‐exposure variation in the radiation‐induced risk of thyroid cancer, we analyzed thyroid cancer incidence data for the period from 1958 through 2005 among 105,401 members of the Life Span Study cohort of Japanese atomic‐bomb survivors. During the follow‐up period, 371 thyroid cancer cases (excluding those with microcarcinoma with a diameter <10 mm) were identified as a first primary among the eligible subjects. Using a linear dose–response model, the excess relative risk of thyroid cancer at 1 Gy of radiation exposure was estimated as 1.28 (95% confidence interval: 0.59–2.70) at age 60 after acute exposure at age 10. The risk decreased sharply with increasing age‐at‐exposure and there was little evidence of increased thyroid cancer rates for those exposed after age 20. About 36% of the thyroid cancer cases among those exposed before age 20 were estimated to be attributable to radiation exposure. While the magnitude of the excess risk has decreased with increasing attained age or time since exposure, the excess thyroid cancer risk associated with childhood exposure has persisted for >50 years after exposure.


Radiation Research | 2001

Stable Chromosome Aberrations in Atomic Bomb Survivors: Results from 25 Years of Investigation

Yoshiaki Kodama; David J. Pawel; Nori Nakamura; Dale L. Preston; T. Honda; Masahiro Itoh; Mimako Nakano; Kazuo Ohtaki; Sachiyo Funamoto; Akio A. Awa

Abstract Kodama, Y., Pawel, D., Nakamura, N., Preston, D., Honda, T., Itoh, M., Nakano, M., Ohtaki, K., Funamoto, S. and Awa, A. A. Stable Chromosome Aberrations in Atomic Bomb Survivors: Results from 25 Years of Investigation. Radiat. Res. 156, 337–346 (2001). Frequencies of stable chromosome aberrations from more than 3,000 atomic bomb survivors were used to examine the nature of the radiation dose response. The end point was the proportion of cells with at least one translocation or inversion detected in Giemsa-stained cultures of approximately 100 lymphocytes per person. The statistical methods allow for both imprecision of individual dose estimates and extra-binomial variation. A highly significant and nonlinear dose response was seen. The shape of the dose response was concave upward for doses below 1.5 Sv but exhibited some leveling off at higher doses. This curvature was similar for the two cities, with a crossover dose (i.e. the ratio of the linear coefficient to the quadratic coefficient) of 1.7 Sv (95% CI 0.9, 4). The low-dose slopes for the two cities differed significantly: 6.6% per Sv (95% CI 5.5, 8.4) in Hiroshima and 3.7% (95% CI 2.6, 4.9) in Nagasaki. This difference was reduced considerably, but not eliminated, when the comparison was limited to people who were exposed in houses or tenements. Nagasaki survivors exposed in factories, as well as people in either city who were outside with little or no shielding, had a lower dose response than those exposed in houses. This suggests that doses for Nagasaki factory worker survivors may be overestimated by the DS86, apparently by about 60%. Even though factory workers constitute about 20% of Nagasaki survivors with dose estimates in the range of 0.5 to 2 Sv, calculations indicate that the dosimetry problems for these people have little impact on cancer risk estimates for Nagasaki.


Radiation Research | 2010

Radiation and smoking effects on lung cancer incidence among atomic-bomb survivors

Kyoji Furukawa; Dale L. Preston; Stefan Lönn; Sachiyo Funamoto; Shuji Yonehara; Takeshi Matsuo; Hiromi Egawa; Shoji Tokuoka; Kotaro Ozasa; Fumiyoshi Kasagi; Kazunori Kodama; Kiyohiko Mabuchi

Abstract While radiation increases the risk of lung cancer among members of the Life Span Study (LSS) cohort of atomic bomb survivors, there are still important questions about the nature of its interaction with smoking, the predominant cause of lung cancer. Among 105,404 LSS subjects, 1,803 primary lung cancer incident cases were identified for the period 1958–1999. Individual smoking history information and the latest radiation dose estimates were used to investigate the joint effects of radiation and smoking on lung cancer rates using Poisson grouped survival regression methods. Relative to never-smokers, lung cancer risks increased with the amount and duration of smoking and decreased with time since quitting smoking at any level of radiation exposure. Models assuming generalized interactions of smoking and radiation fit markedly better than simple additive or multiplicative interaction models. The joint effect appeared to be super-multiplicative for light/moderate smokers, with a rapid increase in excess risk with smoking intensity up to about 10 cigarettes per day, but additive or sub-additive for heavy smokers smoking a pack or more per day, with little indication of any radiation-associated excess risk. The gender-averaged excess relative risk per Gy of lung cancer (at age 70 after radiation exposure at 30) was estimated as 0.59 (95% confidence interval: 0.31–1.00) for nonsmokers with a female : male ratio of 3.1. About one-third of the lung cancer cases in this cohort were estimated to be attributable to smoking while about 7% were associated with radiation. The joint effect of smoking and radiation on lung cancer in the LSS is dependent on smoking intensity and is best described by the generalized interaction model rather than a simple additive or multiplicative model.


Journal of Bone and Joint Surgery, American Volume | 2011

Exposure to Ionizing Radiation and Development of Bone Sarcoma: New Insights Based on Atomic-Bomb Survivors of Hiroshima and Nagasaki

Dino Samartzis; Nobuo Nishi; Mikiko Hayashi; John B. Cologne; Harry M. Cullings; Kazunori Kodama; Edward F. Miles; Sachiyo Funamoto; Akihiko Suyama; Midori Soda; Fumiyoshi Kasagi

BACKGROUND Radiation-induced bone sarcoma has been associated with high doses of ionizing radiation from therapeutic or occupation-related exposures. However, the development of bone sarcoma following exposure to lower doses of ionizing radiation remains speculative. METHODS A cohort analysis based on the Life Span Study (n = 120,321) was performed to assess the development of bone sarcoma in atomic-bomb survivors of Hiroshima and Nagasaki followed from 1958 to 2001. The excess relative risk per gray of ionizing radiation absorbed by the bone marrow was estimated. Additional subject demographic, survival, and clinical factors were evaluated. RESULTS Nineteen cases of bone sarcoma (in eleven males and eight females) were identified among the 80,181 subjects who met the inclusion criteria, corresponding to an incidence of 0.9 per 100,000 person-years. The mean ages at the time of the bombing and at diagnosis were 32.4 and 61.6 years, respectively. The mean bone marrow dose was 0.43 Gy. Osteosarcoma was the most commonly identified bone sarcoma. The most common bone sarcoma site was the pelvis. The overall unadjusted five-year survival rate was 25%. A dose threshold was found at 0.85 Gy (95% confidence interval, 0.12 to 1.85 Gy), with a linear dose-response association above this threshold. The linear slope equaled an excess relative risk of 7.5 per Gy (95% confidence interval, 1.34 to 23.14 per Gy) in excess of 0.85 Gy. CONCLUSIONS On the basis of what we believe is one of the longest and largest prospective studies assessing the development of bone sarcoma in individuals exposed to ionizing radiation, it appears that the development of radiation-induced bone sarcoma may be associated with exposure to much lower doses of ionizing radiation than have previously been reported. Such new insights may potentially improve bone sarcoma prevention measures and broaden our understanding of the role of ionizing radiation from various sources on the development of malignant tumors. This study stresses the need to become increasingly aware of the various health risks that may be attributable to even low levels of ionizing radiation exposure. LEVEL OF EVIDENCE Prognostic Level I. See Instructions to Authors for a complete description of levels of evidence.


Cancer | 2010

Papillary Microcarcinoma of the Thyroid among Atomic Bomb Survivors: Tumor Characteristics and Radiation Risk

Yuzo Hayashi; Frédéric Lagarde; Nobuo Tsuda; Sachiyo Funamoto; Dale L. Preston; Kojiro Koyama; Kiyohiko Mabuchi; Elaine Ron; Kazunori Kodama; Shoji Tokuoka

Radiation exposure is an established cause of clinical thyroid cancer, but little is known about radiation effects on papillary microcarcinoma (PMC) of the thyroid, a relatively common subclinical thyroid malignancy. Because the incidence of these small thyroid cancers has been increasing, it is important to better understand them and their relation to radiation.


Radiation Research | 2012

Radiation and Smoking Effects on Lung Cancer Incidence by Histological Types Among Atomic Bomb Survivors

Hiromi Egawa; Kyoji Furukawa; Dale L. Preston; Sachiyo Funamoto; Shuji Yonehara; Takeshi Matsuo; Shoji Tokuoka; Akihiko Suyama; Kotaro Ozasa; Kazunori Kodama; Kiyohiko Mabuchi

While the risk of lung cancer associated separately with smoking and radiation exposure has been widely reported, it is not clear how smoking and radiation together contribute to the risk of specific lung cancer histological types. With individual smoking histories and radiation dose estimates, we characterized the joint effects of radiation and smoking on type-specific lung cancer rates among the Life Span Study cohort of Japanese atomic bomb survivors. Among 105,404 cohort subjects followed between 1958 and 1999, 1,803 first primary lung cancer incident cases were diagnosed and classified by histological type. Poisson regression methods were used to estimate excess relative risks under several interaction models. Adenocarcinoma (636 cases), squamous-cell carcinoma (330) and small-cell carcinoma (194) made up 90% of the cases with known histology. Both smoking and radiation exposure significantly increased the risk of each major lung cancer histological type. Smoking-associated excess relative risks were significantly larger for small-cell and squamous-cell carcinomas than for adenocarcinoma. The gender-averaged excess relative risks per 1 Gy of radiation (for never-smokers at age 70 after radiation exposure at age 30) were estimated as 1.49 (95% confidence interval 0.1–4.6) for small-cell carcinoma, 0.75 (0.3–1.3) for adenocarcinoma, and 0.27 (0–1.5) for squamous-cell carcinoma. Under a model allowing radiation effects to vary with levels of smoking, the nature of the joint effect of smoking and radiation showed a similar pattern for different histological types in which the radiation-associated excess relative risk tended to be larger for moderate smokers than for heavy smokers. However, in contrast to analyses of all lung cancers as a group, such complicated interactions did not describe the data significantly better than either simple additive or multiplicative interaction models for any of the type-specific analyses.

Collaboration


Dive into the Sachiyo Funamoto's collaboration.

Top Co-Authors

Avatar

Kazunori Kodama

Radiation Effects Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Harry M. Cullings

Radiation Effects Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Midori Soda

Radiation Effects Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Akihiko Suyama

Radiation Effects Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Kiyohiko Mabuchi

Radiation Effects Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Nobuo Nishi

Radiation Effects Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Fumiyoshi Kasagi

Radiation Effects Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Nori Nakamura

Radiation Effects Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Shoji Tokuoka

Radiation Effects Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Eiji Nakashima

Radiation Effects Research Foundation

View shared research outputs
Researchain Logo
Decentralizing Knowledge