Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sachiyo Mimaki is active.

Publication


Featured researches published by Sachiyo Mimaki.


Journal of Thoracic Oncology | 2014

Therapeutic Priority of the PI3K/AKT/mTOR Pathway in Small Cell Lung Cancers as Revealed by a Comprehensive Genomic Analysis

Shigeki Umemura; Sachiyo Mimaki; Hideki Makinoshima; Satoshi Tada; Genichiro Ishii; H. Ohmatsu; Seiji Niho; Kiyotaka Yoh; Shingo Matsumoto; Akiko Takahashi; Masahiro Morise; Yuka Nakamura; Atsushi Ochiai; Kanji Nagai; Reika Iwakawa; Takashi Kohno; Jun Yokota; Yuichiro Ohe; Hiroyasu Esumi; Katsuya Tsuchihara; Koichi Goto

Introduction: The information regarding therapeutically relevant genomic alterations in small cell lung cancer (SCLC) is not well developed. We analyzed the SCLC genome using an integrative approach to stratify the targetable alterations. Methods: We performed whole exon sequencing (n = 51) and copy number analysis (n =47) on surgically resected tumors and matched normal tissue samples from treatment-naive Japanese SCLC patients. Results: The demographics of the 51 patients included in this study were as follows: median age, 67 years (range, 42–86 years); female, 9 (18%); history of smoking, 50 (98%); and pathological stage I/II/III/IV, 28/13/9/1, respectively. The average number of nonsynonymous mutations was 209 (range, 41–639; standard deviation, 130). We repeatedly confirmed the high prevalence of inactivating mutations in TP53 and RB1, and the amplification of MYC family members. In addition, genetic alterations in the PI3K/AKT/mTOR pathway were detected in 36% of the tumors: PIK3CA, 6%; PTEN, 4%; AKT2, 9%; AKT3, 4%; RICTOR, 9%; and mTOR, 4%. Furthermore, the individual changes in this pathway were mutually exclusive. Importantly, the SCLC cells harboring active PIK3CA mutations were potentially targetable with currently available PI3K inhibitors. Conclusions: The PI3K/AKT/mTOR pathway is distinguishable in SCLC genomic alterations. Therefore, a sequencing-based comprehensive analysis could stratify SCLC patients by potential therapeutic targets.


Journal of Thoracic Oncology | 2011

Contribution of the TP53, OGG1, CHRNA3, and HLA-DQA1 Genes to the Risk for Lung Squamous Cell Carcinoma

Takashi Kohno; Hideo Kunitoh; Sachiyo Mimaki; Kouya Shiraishi; Aya Kuchiba; Seiichiro Yamamoto; Jun Yokota

Introduction: Recent genome-wide association studies (GWASs) have identified polymorphisms in several genes associated with lung cancer risk. Nevertheless, functional polymorphisms in DNA repair and metabolic genes that had been reported as being associated with risk for lung cancer, particularly for lung squamous cell carcinoma (SQC), were not examined in those studies. Therefore, significance of these functional polymorphisms was evaluated in a population, in which polymorphisms in the GWAS genes showed associations with lung SQC risk. Methods: Polymorphisms in three DNA repair genes, TP53, MDM2, and OGG1, and two metabolic genes, CYP1A1 and GSTM1, were examined for associations with lung SQC risk in a hospital-based case-control study consisting of 377 cases and 325 controls, which had been previously subjected to association studies on GWAS genes, CHRNA3, TERT, and HLA-DQA1. Results: Genotypes for two DNA repair genes, TP53 and OGG1, showed significant associations with SQC risk (p < 0.05), and those for two GWAS genes, CHRNA3 and HLA-DQA1, showed significant associations with SQC risk (P < 0.05) with odds ratios between 1.65 (95% confidence interval = 1.06–2.57 for OGG1) and 2.57 (95% confidence interval = 1.03–6.87 for CHRNA3). Marginally significant associations were also observed for MDM2 and CYP1A1 genes. Interactions among these polymorphisms on SQC risk were not observed. Conclusions: Association of functional polymorphisms in DNA repair and metabolic genes with lung SQC risk was appreciated. This result indicates the necessity of reevaluation for the significance of functional polymorphisms in DNA repair and metabolic genes on lung cancer risk in other populations subjected to GWASs.


PLOS ONE | 2013

Identification and Characterization of Cancer Mutations in Japanese Lung Adenocarcinoma without Sequencing of Normal Tissue Counterparts

Ayako Suzuki; Sachiyo Mimaki; Yuki Yamane; Akikazu Kawase; Koutatsu Matsushima; Makito Suzuki; Koichi Goto; Sumio Sugano; Hiroyasu Esumi; Yutaka Suzuki; Katsuya Tsuchihara

We analyzed whole-exome sequencing data from 97 Japanese lung adenocarcinoma patients and identified several putative cancer-related genes and pathways. Particularly, we observed that cancer-related mutation patterns were significantly different between different ethnic groups. As previously reported, mutations in the EGFR gene were characteristic to Japanese, while those in the KRAS gene were more frequent in Caucasians. Furthermore, during the course of this analysis, we found that cancer-specific somatic mutations can be detected without sequencing normal tissue counterparts. 64% of the germline variants could be excluded using a total of 217 external Japanese exome datasets. We also show that a similar approach may be used for other three ethnic groups, although the discriminative power depends on the ethnic group. We demonstrate that the ATM gene and the PAPPA2 gene could be identified as cancer prognosis related genes. By bypassing the sequencing of normal tissue counterparts, this approach provides a useful means of not only reducing the time and cost of sequencing but also analyzing archive samples, for which normal tissue counterparts are not available.


Cancer Research | 2017

Amplification of EGFR Wild-Type Alleles in Non–Small Cell Lung Cancer Cells Confers Acquired Resistance to Mutation-Selective EGFR Tyrosine Kinase Inhibitors

Shigenari Nukaga; Hiroyuki Yasuda; Katsuya Tsuchihara; Junko Hamamoto; Keita Masuzawa; Ichiro Kawada; Katsuhiko Naoki; Shingo Matsumoto; Sachiyo Mimaki; Shinnosuke Ikemura; Koichi Goto; Tomoko Betsuyaku; Kenzo Soejima

EGFR-mutated lung cancers account for a significant subgroup of non-small cell lung cancers overall. Third-generation EGFR tyrosine kinase inhibitors (TKI) are mutation-selective inhibitors with minimal effects on wild-type EGFR. Acquired resistance develops to these agents, however, the mechanisms are as yet uncharacterized. In this study, we report that the Src-AKT pathway contributes to acquired resistance to these TKI. In addition, amplification of EGFR wild-type alleles but not mutant alleles was sufficient to confer acquired resistance. These findings underscore the importance of signals from wild-type EGFR alleles in acquiring resistance to mutant-selective EGFR-TKI. Our data provide evidence of wild-type allele-mediated resistance, a novel concept of acquired resistance in response to mutation-selective inhibitor therapy in cancer treatment. Cancer Res; 77(8); 2078-89. ©2017 AACR.


Clinical Cancer Research | 2017

Genomic Profiling of Large-Cell Neuroendocrine Carcinoma of the Lung

Tomohiro Miyoshi; Shigeki Umemura; Yuki Matsumura; Sachiyo Mimaki; Satoshi Tada; Genichiro Ishii; Hibiki Udagawa; Shingo Matsumoto; Kiyotaka Yoh; Seiji Niho; Hironobu Ohmatsu; Keiju Aokage; Tomoyuki Hishida; Junji Yoshida; Kanji Nagai; Koichi Goto; Masahiro Tsuboi; Katsuya Tsuchihara

Purpose: Although large-cell neuroendocrine carcinoma (LCNEC) of the lung shares many clinical characteristics with small-cell lung cancer (SCLC), little is known about its molecular features. We analyzed lung LCNECs to identify biologically relevant genomic alterations. Experimental Design: We performed targeted capture sequencing of all the coding exons of 244 cancer-related genes on 78 LCNEC samples [65 surgically resected cases, including 10 LCNECs combined with non–small cell lung cancer (NSCLC) types analyzed separately, and biopsies of 13 advanced cases]. Frequencies of genetic alterations were compared with those of 141 SCLCs (50 surgically resected cases and biopsies of 91 advanced cases). Results: We found a relatively high prevalence of inactivating mutations in TP53 (71%) and RB1 (26%), but the mutation frequency in RB1 was lower than that in SCLCs (40%, P = 0.039). In addition, genetic alterations in the PI3K/AKT/mTOR pathway were detected in 12 (15%) of the tumors: PIK3CA 3%, PTEN 4%, AKT2 4%, RICTOR 5%, and mTOR 1%. Other activating alterations were detected in KRAS (6%), FGFR1 (5%), KIT (4%), ERBB2 (4%), HRAS (1%), and EGFR (1%). Five of 10 cases of LCNECs combined with NSCLCs harbored previously reported driver gene alterations, all of which were shared between the two components. The median concordance rate of candidate somatic mutations between the two components was 71% (range, 60%–100%). Conclusions: LCNECs have a similar genomic profile to SCLC, including promising therapeutic targets, such as the PI3K/AKT/mTOR pathway and other gene alterations. Sequencing-based molecular profiling is warranted in LCNEC for targeted therapies. Clin Cancer Res; 23(3); 757–65. ©2016 AACR.


Pathology International | 2013

Clinicopathological characteristics of EGFR mutated adenosquamous carcinoma of the lung

Toshihiro Shiozawa; Genichiro Ishii; Koichi Goto; Kanji Nagai; Sachiyo Mimaki; Shotaro Ono; Seiji Niho; Satoshi Fujii; Yuichiro Ohe; Katsuya Tsuchihara; Atsushi Ochiai

Adenosquamous carcinoma of the lung (Ad‐Sq) is an uncommon subtype with poor prognosis. We analyzed the clinicopathological characteristics of Ad‐Sq, focusing the correlation between Epidermal Growth Factor Receptor (EGFR) mutation and clinicopathological factors. A total of 67 cases were selected from September 1992 to May 2011. EGFR mutational analysis (n = 59) was performed by direct sequence. We also performed immunohistochemical staining for EGFR mutated cases using the two mutation‐specific antibodies for deletion and L858R. Postoperative 3‐year survival rate of Ad‐Sq was 58.7%, statistically worse in comparison with adenocarcinoma (58.7% vs. 78.1%, P = 0.038). Twenty‐four percent (14/59) were positive for EGFR mutations. Patients who had never been smokers and who were lymphatic permeation positive were seen more frequently in the mutation positive group (P = 0.035, 0.027, respectively). Moreover, the EGFR mutated group tended to have a more positive prognosis than negative. Focusing on the pathological features, the lepidic growth pattern was more frequently seen in the positive group (P = 0.018). Immunoreactivity for the DEL‐specific and L858‐specific antibody were observed in both adenocarcinoma and squamous cell carcinoma components. Our study demonstrated that EGFR mutated Ad‐Sq had similar clinicopathological features as EGFR mutated adenocarcinoma.


Carcinogenesis | 2016

Hypermutation and unique mutational signatures of occupational cholangiocarcinoma in printing workers exposed to haloalkanes

Sachiyo Mimaki; Yukari Totsuka; Yutaka Suzuki; Chikako Nakai; Masanori Goto; Motohiro Kojima; Hirofumi Arakawa; Shigekazu Takemura; Shogo Tanaka; Shigeru Marubashi; Masahiko Kinoshita; Tomonari Matsuda; Tatsuhiro Shibata; Hitoshi Nakagama; Atsushi Ochiai; Shoji Kubo; Shoji Nakamori; Hiroyasu Esumi; Katsuya Tsuchihara

Summary These occupational cholangiocarcinoma cases shared a high mutation burden, strand bias and unique trinucleotide mutational signatures, suggesting that the patients might have been exposed to a common strong mutagen. The underlying mechanisms of mutagenesis should be further investigated.


British Journal of Cancer | 2017

Clinical significance of BRAF non-V600E mutations on the therapeutic effects of anti-EGFR monoclonal antibody treatment in patients with pretreated metastatic colorectal cancer: the Biomarker Research for anti-EGFR monoclonal Antibodies by Comprehensive Cancer genomics (BREAC) study

Eiji Shinozaki; Takayuki Yoshino; Kentaro Yamazaki; Kei Muro; Kensei Yamaguchi; Tomohiro Nishina; Satoshi Yuki; Kohei Shitara; Hideaki Bando; Sachiyo Mimaki; Chikako Nakai; Koutatsu Matsushima; Yutaka Suzuki; Kiwamu Akagi; Takeharu Yamanaka; Shogo Nomura; Satoshi Fujii; Hiroyasu Esumi; Masaya Sugiyama; Nao Nishida; Masashi Mizokami; Yasuhiro Koh; Yukiko Abe; Atsushi Ohtsu; Katsuya Tsuchihara

Background:Patients with BRAFV600E-mutated metastatic colorectal cancer (mCRC) have a poorer prognosis as well as resistance to anti-EGFR antibodies. However, it is unclear whether BRAF mutations other than BRAFV600E (BRAFnon-V600E mutations) contribute to anti-EGFR antibody resistance.Methods:This study was composed of exploratory and inference cohorts. Candidate biomarkers identified by whole exome sequencing from super-responders and nonresponders in the exploratory cohort were validated by targeted resequencing for patients who received anti-EGFR antibody in the inference cohort.Results:In the exploratory cohort, 31 candidate biomarkers, including KRAS/NRAS/BRAF mutations, were identified. Targeted resequencing of 150 patients in the inference cohort revealed 40 patients with RAS (26.7%), 9 patients with BRAFV600E (6.0%), and 7 patients with BRAFnon-V600E mutations (4.7%), respectively. The response rates in RAS, BRAFV600E, and BRAFnon-V600E were lower than those in RAS/BRAF wild-type (2.5%, 0%, and 0% vs 31.9%). The median PFS in BRAFnon-V600E mutations was 2.4 months, similar to that in RAS or BRAFV600E mutations (2.1 and 1.6 months) but significantly worse than that in wild-type RAS/BRAF (5.9 months).Conclusions:Although BRAFnon-V600E mutations identified were a rare and unestablished molecular subtype, certain BRAFnon-V600E mutations might contribute to a lesser benefit of anti-EGFR monoclonal antibody treatment.


Cancer Science | 2014

Effect of a poly(ADP-ribose) polymerase-1 inhibitor against esophageal squamous cell carcinoma cell lines

Tomomitsu Nasuno; Sachiyo Mimaki; Makito Okamoto; Hiroyasu Esumi; Katsuya Tsuchihara

Effective molecular target drugs that improve therapeutic efficacy with fewer adverse effects for esophageal cancer are highly anticipated. Poly(ADP‐ribose) polymerase (PARP) inhibitors have been proposed as low‐toxicity agents to treat double strand break (DSB)‐repair defective tumors. Several findings imply the potential relevance of DSB repair defects in the tumorigenesis of esophageal squamous cell carcinoma (ESCC). We evaluated the effect of a PARP Inhibitor (AZD2281) on the TE‐series ESCC cell lines. Of these eight cell lines, the clonogenic survival of one (TE‐6) was reduced by AZD2281 to the level of DSB repair‐defective Capan‐1 and HCC1937 cells. AZD2281‐induced DNA damage was implied by increases in γ‐H2AX and cell cycle arrest at G2/M phase. The impairment of DSB repair in TE‐6 cells was suggested by a sustained increase in γ‐H2AX levels and the tail moment calculated from a neutral comet assay after X‐ray irradiation. Because the formation of nuclear DSB repair protein foci was impaired in TE‐6 cells, whole‐exome sequencing of these cells was performed to explore the gene mutations that might be responsible. A novel mutation in RNF8, an E3 ligase targeting γ‐H2AX was identified. Consistent with this, polyubiquitination of γ‐H2AX after irradiation was impaired in TE‐6 cells. Thus, AZD2281 induced growth retardation of the DSB repair‐impaired TE‐6 cells. Interestingly, a strong correlation between basal expression levels of γ‐H2AX and sensitivity to AZD2281was observed in the TE‐series cells (R2 = 0.5345). Because the assessment of basal DSB status could serve as a biomarker for selecting PARP inhibitor‐tractable tumors, further investigation is warranted.


Genes, Chromosomes and Cancer | 2017

Genomic and transcriptomic analysis of imatinib resistance in gastrointestinal stromal tumors

Tsuyoshi Takahashi; Asmaa Elzawahry; Sachiyo Mimaki; Eisaku Furukawa; Rie Nakatsuka; Hiromi Nakamura; Takahiko Nishigaki; Satoshi Serada; Tetsuji Naka; Seiichi Hirota; Tatsuhiro Shibata; Katsuya Tsuchihara; Toshirou Nishida; Mamoru Kato

Gastrointestinal stromal tumors represent the most common mesenchymal tumor of the digestive tract, driven by gain‐of‐function mutations in KIT. Despite its proven benefits, half of the patients treated with imatinib show disease progression within 2 years due to secondary resistance mutations in KIT. It remains unclear how the genomic and transcriptomic features change during the acquisition of imatinib resistance. Here, we performed exome sequencing and microarray transcription analysis for four imatinib‐resistant cell lines and one cell line briefly exposed to imatinib. We also performed exome sequencing of clinical tumor samples. The cell line briefly exposed to imatinib exhibited few single‐nucleotide variants and copy‐number alterations, but showed marked upregulation of genes related to detoxification and downregulation of genes involved in cell cycle progression. Meanwhile, resistant cell lines harbored numerous genomic changes: amplified genes related to detoxification and deleted genes with cyclin‐dependent kinase activity. Some variants in the resistant samples were traced back to the drug‐sensitive samples, indicating the presence of ancestral subpopulations. The subpopulations carried variants associated with cell death. Pre‐existing cancer cells with genetic alterations promoting apoptosis resistance may serve as a basis whereby cancer cells with critical mutations, such as secondary KIT mutations, can establish full imatinib resistance.

Collaboration


Dive into the Sachiyo Mimaki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shingo Matsumoto

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hiroyasu Esumi

Saitama Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takashi Kohno

National Cancer Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge